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Exercise 1 (40 points).

(a) The base of a solid is the region bounded by the curve y = x4 cosx3 for x ∈
[
0, 3
√

π
2

]
and line y = 0.

Find the volume of that solid given that the cross sections perpendicular to the x-axis are triangles
with height equal to the base.
Area of a right triangle with equal base and height is S = a2

2 , where a is the base of the triangle and
it is equal to f(x).
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+
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=

[
u3

36

]π
2

0

+
1

12

∫ π
2

0
u2d

(
sin 2u

2

)
IbP
=
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=
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=
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(b) The base of a solid is the region bounded by the curves y = 4
√
1− 9x2, and y = 0. Find the volume

of that solid given that the cross sections perpendicular to the x-axis are rectangles with height twice
as big as width.

4
√

1− 9x2 = 0 =⇒ x ∈
{
−1

3
,
1

3

}
Area of a right triangle with height twice as big as width is S = 2a2

2 = a2, where a is the base of the
triangle and it is equal to f(x).
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=
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√
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√
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2
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=
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+
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2
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=

π

6
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Exercise 2 (30 points).

(a) Sketch the region bounded by the curves y = 3 3
√
x and y =

√
x+ 2, and find the volume of the solid

generated by revolving this region about the x-axis.

3 3
√
x =

√
x+ 2 =⇒ x = 1, y = 3 and

√
x+ 2 ≥ 3 3

√
x, x ∈ [0, 1]
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=
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(b) Sketch the region bounded by the curve y = 2+ sinx, x ∈
[
0, π2

]
and lines y = 3, x = 0 and find the

volume of the solid generated by revolving this region about the x-axis.

2 + sinx = 3, x ∈
[
0,

π

2

]
=⇒ x =

π

2
and − 1 ≤ sinx ≤ 1 =⇒ 2 + sinx ≤ 3
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(c) Sketch the region bounded by the curve y2 − x4 = 1, and line y =
√
17 and find the volume of the

solid generated by revolving this region about the x-axis.

√
17

2 − x4 = 1 =⇒ x = ±2 and y2 − 04 = 1 =⇒ y = 1

Taking the positive half y =
√

x4 + 1
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√
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=
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Exercise 3 (30 points).

(a) Sketch the region bounded by the curve y = −x2 + 6x− 8 and line y = 0 and find the volume of the
solid generated by revolving this region about the y-axis.

−x2 + 6x− 8 = −(x− 4)(x− 2) = 0 =⇒ x = 2, x = 4
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(b) Sketch the region bounded by the curve y = 3− ex and lines y = 2, x = 1 and find the volume of the
solid generated by revolving this region about the y-axis.

2 = 3− ex =⇒ x = 0 and 3− e1 = 3− e
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)
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(c) Sketch the region bounded by the curve y = 1− ln2 x and line y = 0 and find the volume of the solid
generated by revolving this region about the y-axis.

0 = 1− ln2 x =⇒ x =
1

e
, x = e,

dy

dx
= −2

lnx

x
= 0 =⇒ x = 1
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∫ e

1
e

x lnxdx

)

IbP
= 2π

([
x2(1− ln2 x) + x2 lnx

2

]e
1
e

−
∫ e

1
e

x

2
dx

)
FTC
= 2π

[
x2(1− ln2 x) + x2 lnx
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