

CS102 Calculus 3 Section G - Homework 9

Mher Saribekyan A09210183

November 12, 2024

Problem 1 (20 points).

Evaluate the line integral, where C is the given curve.

a)
$$\int_C y^3 \, ds$$
, $C: x = t^3, y = t, 0 \le t \le 2$

$$\int_{0}^{2} t^{3} \sqrt{9t^{4} + 1} \, dt = \frac{1}{36} \int_{0}^{2} \sqrt{9t^{4} + 1} \, d(9t^{4} + 1) = \frac{1}{54} \left((9 \cdot 2^{4} + 1)^{\frac{3}{2}} - 1 \right) = \frac{145^{\frac{3}{2}} - 1}{54}$$

b)
$$\int_C xyz \, ds, C: x = 2\sin(t), y = t, z = -2\cos(t), 0 \le t \le \pi$$

$$\int_0^{\pi} -4t \sin(t) \cos(t) \sqrt{5} \, dt = \sqrt{5} \left[t \cos(2t) \right]_0^{\pi} - \sqrt{5} \int_0^{\pi} \cos(2t) \, dt = \pi \sqrt{5}$$

c)
$$\int_C (x+2y) dx + x^2 dy$$
, C consists of the line segments from $(0,0)$ to $(2,1)$ and from $(2,1)$ to $(3,0)$

$$x_1 = 2t, y_1 = t, x_2 = 2 + t, y_2 = 1 - t, t \in [0, 1]$$

$$\int_0^1 8t + 4t^2 dt + \int_0^1 4 - t - (2+t)^2 dt = 3 \int_0^1 t^2 + t dt = \frac{5}{2}$$

d)
$$\int_C y \, dx + z \, dy + x \, dz$$
, $C: x = \sqrt{t}, y = t, z = t^2, 1 \le t \le 4$

$$\int_{1}^{4} \frac{\sqrt{t}}{2} + t^{2} + 2t^{\frac{3}{2}} dt = \left(\frac{4^{\frac{3}{2}}}{3} + \frac{4^{3}}{3} + \frac{4 \cdot 4^{\frac{5}{2}}}{5}\right) - \left(\frac{1^{\frac{3}{2}}}{3} + \frac{1^{3}}{3} + \frac{4 \cdot 1^{\frac{5}{2}}}{5}\right) = \frac{722}{15}$$

Problem 2 (20 points).

Find the work done by the force field $\mathbf{F} = F(x, y)$ in moving an object along the trajectory C.

a)
$$F(x,y) = \{x, y+2\}, C: r(t) = (t - \sin(t), 1 - \cos(t)), 0 \le t \le 2\pi$$

$$\int_0^{2\pi} (t - \sin(t))(1 - \cos(t)) + (3 - \cos(t))\sin(t) dt = \int_0^{2\pi} t - t\cos(t) + 2\sin(t) - 2\sin(t)\cos(t) dt$$

$$\stackrel{*}{=} \left[\frac{t^2}{2} - t\sin(t) - 3\cos(t) + \frac{\cos(2t)}{2} \right]_0^{2\pi} = 2\pi^2$$

b)
$$F(x, y, z) = \{x - y^2, y - z^2, z - x^2\}$$
, C is the line segment from $(0, 0, 1)$ to $(2, 1, 0)$
$$x = 2t, y = t, z = 1 - t, t \in [0, 1]$$

$$\int_0^1 2(2t - t^2) + (t - (1 - t)^2) - (1 - t - (2t)^2) dt = \int_0^1 8t + t^2 - 2 dt = 4 + \frac{1}{3} - 2 = \frac{7}{3}$$

Problem 3 (20 points).

Determine whether or no **F** is a conservative vector field. If it is, find a function f such that $F = \nabla f$.

a)
$$F(x,y) = \{e^x \cos(y), e^x \sin(y)\}\$$

$$-e^x \sin(y) \neq e^x \sin(y) \implies \mathbf{F}$$
 is not conservative

b)
$$F(x,y) = \{ye^x + \sin(y), e^x + x\cos(y)\}$$

$$e^x + \cos(y) = e^x + \cos(y)$$
 and $P'_x(x,y) = ye^x, Q'_y(x,y) = -x\sin(y)$ are continous

$$\therefore$$
 F is conservative $\Longrightarrow \exists f$, s.t. **F** = ∇f

$$\begin{cases} P = f'_x \implies f = ye^x + x\sin(y) + c_1 \\ Q = f'_y \implies f = ye^x + x\sin(y) + c_2 \end{cases} \implies f = ye^x + x\sin(y) + c, c \in \mathbb{R}$$

Problem 4 (20 points).

For the given vector field **F** find a function f such that $\mathbf{F} = \nabla f$ and use it to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

a)
$$F(x,y) = \{xy^2, x^2y\}, C : \mathbf{r}(t) = (t + \sin(\frac{\pi}{2}t), t + \cos(\frac{\pi}{2}t)), 0 \le t \le 1$$

$$2xy = 2xy, P'_y, Q'_x$$
 are continuous $\implies \exists f, \mathbf{F} = \nabla f$

$$\begin{cases} P = f'_x \implies f = \frac{x^2 y^2}{2} + c_1 \\ Q = f'_y \implies f = \frac{x^2 y^2}{2} + c_2 \end{cases} \implies f = \frac{x^2 y^2}{2} + c, c \in \mathbb{R}$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = 2$$

b) $F(x,y,z)=\{yz,xz,xy+2z\},$ C is the line segment from (1,0,-2) to (4,6,3)

$$1 = 1 = 1, P'_x, Q'_y, R'_z$$
 are continuous $\implies \exists f, \mathbf{F} = \nabla f$

$$\begin{cases} P = f'_x \implies f = xyz + c_1 \\ Q = f'_y \implies f = xyz + c_2 \\ R = f'_z \implies f = xyz + z^2 \end{cases} \implies f = xyz + z^2 + c, c \in \mathbb{R}$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = 81$$

Problem 5 (20 points).

Use Green's theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$.

a) $F(x,y) = \{y + e^{\sqrt{x}}, 2x + \cos(y^2)\}$, C is the boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$ oriented counterclockwise

$$P, Q$$
 are continuous $\implies \oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \int_{x^2}^{\sqrt{x}} 2 - 1 \, dy \, dx = \int_0^1 \sqrt{x} - x^2 \, dx = \frac{1}{3}$

b) $F(x,y) = \{y\cos(x) - xy\sin(x), xy + x\cos(x)\}, C$ is the triangle from (0,0) to (0,4) to (2,0) to (0,0)

$$P, Q \text{ are continuous } \implies \oint_C \mathbf{F} \cdot d\mathbf{r} = -\int_0^4 \int_0^{4-2x} (\cos(x) - x \sin(x)) - (y + \cos(x) - x \sin(x)) \, dy \, dx$$

$$= -\int_0^2 \int_0^{4-2x} y \, dy \, dx = -2\int_0^2 (2-x)^2 \, dx = -2\left(8-8+\frac{8}{3}\right) = -\frac{16}{3}$$

Problem 6 (10 points).

Determine whether or not the given set D is simply connected. If it is not, give an example of a vector field $\mathbf{F} = \{P(x,y), Q(x,y)\}$ such that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ holds at any point of D, and two curves C_1 and C_2 contained in D with the same initial and terminal points such that $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \neq \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.

a)
$$D = \{(x,y)|1 \le x^2 + y^2 \le 4, y \ge 0\}$$

D has no holes $\implies D$ is simply connected

b)
$$D = \{(x,y)|(x-2)^2 + (y-3)^2 > 1\}$$

D is not simply connected, as it has a hole $(x-2)^2+(y-3)^2\leq 1$

$$\mathbf{F} := \left\{ -\frac{y-3}{(x-2)^2 + (y-3)^2}, \frac{x-2}{(x-2)^2 + (y-3)^2} \right\}, \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$\begin{cases} C_1 : \mathbf{r}(t) = (2\cos(t) + 2, 2\sin(t) + 3) \\ C_2 : \mathbf{r}(t) = (2\cos(t) + 2, -2\sin(t) + 3) \end{cases}, t \in [0, \pi]$$

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi} \sin^2 t + \cos^2 t \, dt = \pi \neq \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^{\pi} -\sin^2 t - \cos^2 t \, dt = -\pi$$

Used things

Denote P and Q functions of x and y, s.t. $\mathbf{F} = \{P(x,y), Q(x,y)\}$

*
$$\int t \cos(t) dt = \int t d\sin(t) \stackrel{IbP}{=} t \sin(t) - \int \sin(t) dt = t \sin(t) + \cos(t) + c$$