

CS104 Linear Algebra Section D - Homework 2

Mher Saribekyan A09210183

February 2, 2024

Exercise 1 (40 points).

The plane \mathcal{P} contains the points A=(2,-1,0) and B=(1,0,-3) and is perpendicular to the plane \mathbb{Q} given by its general equation x+3y-2z=2.

a) Find two nonparallel direction vectors for \mathcal{P} .

$$\therefore A, B \in \mathcal{P} \implies \vec{AB} \in \mathcal{P} \implies \mathbf{u} := \vec{AB} = \begin{bmatrix} 1 - 2 \\ 0 - (-1) \\ -3 - 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}.$$

A normal vector of \mathbb{Q} is $\mathbf{n} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$, $\therefore \mathcal{P} \perp \mathbb{Q} \implies \mathbf{n}$ is a direction vector of $\mathcal{P}, \mathbf{v} := \mathbf{n}$

$$\mathbf{u} = \begin{bmatrix} -1\\1\\-3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1\\3\\-2 \end{bmatrix}$ are direction vectors of \mathcal{P}

b) Find the vector and the parametric equations of \mathcal{P} .

$$\mathbf{x} = \mathbf{p} + t\mathbf{u} + s\mathbf{v} \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix} + s \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, x, y, z \in \mathcal{P}, s, t \in \mathbb{R}$$

$$\begin{cases} x = 2 + (-1)t + 1s \\ y = -1 + 1t + 3s \\ z = 0 + (-3)t + (-2)s \end{cases}, s, t \in \mathbb{R} \implies \begin{cases} x = 2 - t + s \\ y = -1 + t + 3s \\ z = -3t - 2s \end{cases}, s, t \in \mathbb{R}$$

c) Find a normal vector for \mathcal{P} .

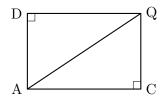
Take normal vector
$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = \begin{bmatrix} 1 \cdot (-2) - (-3) \cdot 3 \\ (-3) \cdot 1 - (-1) \cdot (-2) \\ (-1) \cdot 3 - 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ -4 \end{bmatrix}$$

d) Find the normal and the general equations of \mathcal{P} .

$$\begin{bmatrix} 7 \\ -5 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = 7 \cdot 2 + (-5) \cdot (-1) + (-4) \cdot 0 = 19$$
$$7x - 5y - 4z = 19$$

e) Find the distance $d(Q, \mathcal{P})$ from the point Q = (3, -2, 2) to \mathcal{P} .

Let C be a point on \mathcal{P} , such that $QC \perp \mathcal{P}$. Distance between a point and a plane is the perpendicular line, therefore QC will be the distance between Q and \mathcal{P} . Construct the diagram.



QC is perpendicular to $AC \in \mathcal{P}$. Take D, such that $\vec{AD} \parallel \mathbf{n}$ and $AD \perp DQ$. This implies that the triangles ACQ and ADQ are equal, which implies that QC = AD. Therefore $d(Q, \mathcal{P}) = QC = AD = \|proj_{\mathbf{n}}\vec{AQ}\|$

$$\vec{A}\vec{Q} = \begin{bmatrix} 3-2\\ (-2)-(-1)\\ 2-0 \end{bmatrix} = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}, \mathbf{n} = \begin{bmatrix} 7\\ -5\\ -4 \end{bmatrix}$$

$$proj_{\mathbf{n}}\vec{A}\vec{Q} = \frac{A\vec{Q}\cdot\mathbf{n}}{\mathbf{n}\cdot\mathbf{n}}\mathbf{n} = \frac{1\cdot7+(-1)\cdot(-5)+2\cdot(-4)}{7\cdot7+(-5)\cdot(-5)+(-4)\cdot(-4)} \begin{bmatrix} 7\\ -5\\ -4 \end{bmatrix} = \frac{2}{45} \begin{bmatrix} 7\\ -5\\ -4 \end{bmatrix}$$

$$\left\| proj_{\mathbf{n}}\vec{A}\vec{Q} \right\| = \frac{2}{45}\sqrt{7^2+(-5)^2+(-4)^2} = \frac{2}{15}\sqrt{10}$$

Exercise 2 (40 points).

The line l passes through the point P = (2, 0, -3) and is perpendicular to the plane \mathcal{P} given by its vector

equation
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} + s \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} s, t \in \mathbb{R}$$

a) Find two non-parallel normal vectors for l.

 $\because l \perp \mathcal{P} \implies l$ is perpendicular to direction vectors of \mathcal{C}

$$l \perp \begin{bmatrix} -1\\3\\2 \end{bmatrix}$$
 and $l \perp \begin{bmatrix} 1\\-2\\5 \end{bmatrix}$

2

b) Find the normal and general equations of l.

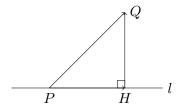
$$\begin{cases}
\begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix} \\
\begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix} \implies \begin{cases}
\begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -8 \\
\begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -13
\end{cases}
\implies \begin{cases} -x + 3y + 2z = -8 \\ x - 2y + 5z = -13
\end{cases}$$

c) Find a direction vector for l.

d) Find the vector and parametric equations of l.

$$\mathbf{x} = \mathbf{p} + r\mathbf{d}, r \in \mathbb{R} \implies \mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix} + r \begin{bmatrix} 19 \\ 7 \\ -1 \end{bmatrix}, r \in \mathbb{R} \implies \begin{cases} x = 2 + 19r \\ y = 7r \\ z = -3 - r \end{cases}, r \in \mathbb{R}$$

e) Find the distance d(Q, l) from the point Q = (2, 1, -3) to l.



Take the projection PH of PQ on $l \implies HQ \perp PH$. We can find distance between Q and l by finding the distance of $\vec{HQ} = \vec{PQ} - \vec{PH} = \vec{PQ} - \text{proj}_{l}\vec{PQ}$.

$$\vec{PQ} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \text{proj}_{l} \vec{PQ} = \frac{\mathbf{d} \cdot \vec{PQ}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d} = \frac{19 \cdot 0 + 7 \cdot 1 + (-1) \cdot 0}{19 \cdot 19 + 7 \cdot 7 + (-1) \cdot (-1)} \begin{bmatrix} 19 \\ 7 \\ -1 \end{bmatrix} = \frac{7}{411} \begin{bmatrix} 19 \\ 7 \\ -1 \end{bmatrix}$$

$$d(Q,l) = \left\| \vec{PQ} - \text{proj}_{l} \vec{PQ} \right\| = \left\| \begin{bmatrix} 133/411 \\ 362/411 \\ -7/411 \end{bmatrix} \right\| = \frac{1}{411} \sqrt{133^2 + 362^2 + (-7)^2} = \frac{1}{411} \sqrt{148782} \approx 0.9385$$

Exercise 3 (20 points).

The line l passes through the point P = (-3, 2, 3) and has direction vector $\mathbf{d} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$. For each of the following planes \mathcal{P} , determine whether l and \mathcal{P} are parallel, perpendicular, or neither:

a) -3x + 9y - 6z = 11.

$$\mathbf{n} = \begin{bmatrix} -3\\9\\-6 \end{bmatrix} = -3 \begin{bmatrix} 1\\-3\\2 \end{bmatrix} = -3\mathbf{d} \implies \mathbf{n} \parallel \mathbf{d} \implies l \perp \mathcal{P}$$

b) 4x + 2y + z = 4.

$$\mathbf{n} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \implies \mathbf{n} \cdot \mathbf{d} = 4 \cdot 1 + 2 \cdot (-3) + 1 \cdot 2 = 0 \implies \mathbf{n} \perp \mathbf{d} \implies l \parallel \mathcal{P}$$

c) 2x + 5y - 3z = 6.

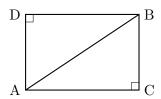
$$\mathbf{n} = \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix} \implies \mathbf{n} \cdot \mathbf{d} = 2 \cdot 1 + 5 \cdot (-3) + (-3) \cdot 2 \neq 0 \implies \mathbf{n} \not\perp \mathbf{d} \implies l \not\parallel \mathcal{P}$$

Assume $\mathbf{n} \parallel \mathbf{d}$. Let $c \in \mathbb{R}$ such that $\mathbf{n} = c\mathbf{d} \implies 2 = c \cdot 1$ and $5 = c \cdot (-3) \implies \nexists c \implies l \not\perp \mathcal{P}$ $\therefore l \not\parallel \mathcal{P}$ and $l \not\perp \mathcal{P}$

Exercise 4 (0 points).

Prove, that the distance d(B,l) from the point $B=(x_0,y_0)$ to the line l with general equation ax+by=d is given by the formula $d(B,l)=\frac{|ax_0+by_0-d|}{\sqrt{a^2+b^2}}$.

Take an arbitrary point A = (x, y) on the line l. Take points C on the line l and D, such that $AC \perp BC, AD \parallel \mathbf{n}$, where \mathbf{n} is the normal vector of the line.



Distance between point B and line l is $BC = AD = \left\| \operatorname{proj}_{\mathbf{n}} \vec{AB} \right\|$, by equality of triangles. By the general equation of the line we find that $\mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix}$, $\vec{AB} = \begin{bmatrix} x_0 - x \\ y_0 - y \end{bmatrix}$.

$$\left\|\operatorname{proj}_{\mathbf{n}}\vec{AB}\right\| = \left\|\frac{\mathbf{n} \cdot \vec{AB}}{\mathbf{n} \cdot \mathbf{n}}\mathbf{n}\right\| = \left\|\frac{a \cdot (x_0 - x) + b \cdot (y_0 - y)}{a \cdot a + b \cdot b} \begin{bmatrix} a \\ b \end{bmatrix}\right\| = \frac{|ax_0 + by_0 - (ax + by)|}{a^2 + b^2} \sqrt{a^2 + b^2}$$

$$\therefore ax + by = d \implies d(B, l) = \left\|\operatorname{proj}_{\mathbf{n}}\vec{AB}\right\| = \frac{|ax_0 + by_0 - d|}{\sqrt{a^2 + b^2}}$$