

CS104 Linear Algebra Section D - Homework 5

Mher Saribekyan A09210183

February 28, 2024

Exercise 1 (5 points).

Let
$$A = \begin{bmatrix} 1 & 4 & -8 \\ -1 & 3 & 0 \end{bmatrix}$$
, $C = \begin{bmatrix} 1-2i & 2+2i \\ i & 3-i \\ 3-2i & -i \end{bmatrix}$. Compute $2A+iC^T$

$$\begin{aligned} 2A + iC^T &= 2 \begin{bmatrix} 1 & 4 & -8 \\ -1 & 3 & 0 \end{bmatrix} + i \begin{bmatrix} 1 - 2i & 2 + 2i \\ i & 3 - i \\ 3 - 2i & -i \end{bmatrix}^T = \begin{bmatrix} 2 & 8 & -16 \\ -2 & 6 & 0 \end{bmatrix} + i \begin{bmatrix} 1 - 2i & i & 3 - 2i \\ 2 + 2i & 3 - i & -i \end{bmatrix} \\ &= \begin{bmatrix} 2 & 8 & -16 \\ -2 & 6 & 0 \end{bmatrix} + \begin{bmatrix} 2 + i & -1 & 2 + 3i \\ -2 + 2i & 1 + 3i & 1 \end{bmatrix} = \begin{bmatrix} 4 + i & 7 & -14 + 3i \\ -4 + 2i & 7 + 3i & 1 \end{bmatrix} \end{aligned}$$

Exercise 2 (5 points).

$$\text{Let } A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 0 & 4 \end{bmatrix} \text{ , } B = \begin{bmatrix} 1 & -1 & 2 \\ 1 & -1 & 2 \\ 0 & 1 & -1 \end{bmatrix} \text{ , } C = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ , } D = [2, -1, 1] \text{ , } E = \begin{bmatrix} 2+i & 1+i \\ 2i & 2-i \end{bmatrix}.$$

For each item, decide whether or not the given expression is defined. For each item that is defined, compute the result:

a)
$$AB = \begin{bmatrix} 2 & -4 & 6 \\ 2 & 2 & 0 \end{bmatrix}$$

b) CA is not defined.

c)
$$A^T E = \begin{bmatrix} 2+5i & 5-i\\ 2+i & 1+i\\ -4+6i & 6-6i \end{bmatrix}$$

$$d) BD^T = \begin{bmatrix} 5 \\ 5 \\ -2 \end{bmatrix}$$

e)
$$A^T A = \begin{bmatrix} 5 & 1 & 6 \\ 1 & 1 & -2 \\ 6 & -2 & 20 \end{bmatrix}$$

Exercise 3 (10 points).

Compute the following product using the indicated partitioning.

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ \hline 0 & 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11} \cdot B_{11} + A_{12}B_{21} & A_{11} \cdot B_{12} + A_{12}B_{22} \\ A_{21} \cdot B_{11} + A_{22}B_{21} & A_{21} \cdot B_{12} + A_{22}B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 4 & 1 & 2 & 1 \end{bmatrix}$$

Exercise 4 (10 points).

a) Prove that the main diagonal of a skew-symmetric matrix must consist entirely of zeros. Let A be an $n \times n$ skew-symmetric matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, A = -A^T \implies A + A^T = 0$$

$$A + A^T = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} + a_{11} & a_{12} + a_{21} & \dots & a_{1n} + a_{n1} \\ a_{21} + a_{12} & a_{22} + a_{22} & \dots & a_{2n} + a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{n1} + a_{1n} & a_{n2} + a_{2n} & \dots & a_{nn} + a_{nn} \end{bmatrix} = 0$$

 $2a_{11} = 0, 2a_{22} = 0, ..., 2a_{nn} = 0 \implies \text{Main diagonal must constist entirely of zeros.}$

Another property we see is $a_{ij} + a_{ji} = 0$, which implies that $a_{ij} = -a_{ji}$, $i, j \in \{1, 2, ..., n\}$

b) If A and B are skew-symmetric 2×2 matrices, under what conditions is AB skewsymmetric?

$$A = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} \implies AB = \begin{bmatrix} -ab & 0 \\ 0 & -ab \end{bmatrix}$$

AB is a skew-symmetric matrix, if a = 0 or b = 0, hence one of the matrices A or B have to be the zero matrix, in which case AB will also be the zero matrix.

Exercise 5 (10 points).

Solve the given matrix equation for X. Simplify your answers as much as possible. Assume that all matrices are invertible:

a)
$$A^3X = A^{-2}$$

$$A^{3}X = A^{-2} \stackrel{A^{-n} = (A^{-1})^{n}}{\Longrightarrow} A^{-1}A^{-1}A^{-1}AAAX = A^{-1}A^{-1}A^{-1}(A^{-1})^{2} \implies$$

$$\stackrel{AA^{-1} = I}{\Longrightarrow} X = A^{-1}A^{-1}A^{-1}A^{-1}A^{-1} \implies X = A^{-5}$$

b)
$$(B^{-3}X)^{-1} = A(B^{-2}A)^{-1}$$

 $(B^{-3}X)^{-1} = A(B^{-2}A)^{-1} \stackrel{B^{-n} = (B^{-1})^n}{\Longrightarrow} ((B^{-1})^3 X)^{-1} = A((B^{-1})^2 A)^{-1} \implies$
 $\implies (B^{-1}B^{-1}B^{-1}X)^{-1} = A(B^{-1}B^{-1}A)^{-1} \implies X^{-1}BBB = AA^{-1}BB \stackrel{AA^{-1} = I}{\Longrightarrow}$
 $\implies X^{-1}BBBB^{-1}B^{-1} = BBB^{-1}B^{-1} \implies X^{-1}B = I \implies X = B$

Exercise 6 (20 points).

Find a sequence of elementary matrices E_1 , E_2 , ..., E_k such that $E_k...E_2E_1A = I$ or explain why it is impossible. If such sequence exists, use it to write both A and A^{-1} as a product of elementary matrices.

a) $A = \begin{bmatrix} 2 & 4 \\ 1 & 1 \end{bmatrix}$ Construct the augmented matrix [A|I] and reduce to $[I|A^{-1}]$ with elementary operations.

$$\begin{bmatrix} 2 & 4 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 4 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & -2 \end{bmatrix} \longrightarrow$$

$$\stackrel{\frac{1}{2}R_2}{\longrightarrow} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} & -1 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & 0 & -\frac{1}{2} & 2 \\ 0 & 1 & \frac{1}{2} & -1 \end{bmatrix} \Longrightarrow A^{-1} = \begin{bmatrix} -\frac{1}{2} & 2 \\ \frac{1}{2} & -1 \end{bmatrix}$$

$$E_4 E_3 E_2 E_1 A = I, E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}, E_4 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$E_1^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, E_4^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$A^{-1} = E_4 E_3 E_2 E_1 I \text{ and } A = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} I$$

b)
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 6 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

This matrix cannot be brought to the identity matrix I_2 with elementary operations, which means it does not have an inverse. We also know that, because the determinant of the matrix is $1 \cdot 6 - 2 \cdot 3 = 0$. Which is why there does not exist a sequence of elementary matrices such that $E_k...E_2E_1A = I$.

Exercise 7 (30 points).

Consider the matrix
$$B = \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & -4 \\ -2 & 0 & 6 \end{bmatrix}$$

a) Find the inverse of B by the Gauss-Jordan method.

$$\begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & -4 & 0 & 1 & 0 \\ -2 & 0 & 6 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \begin{bmatrix} 1 & 0 & -4 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 \\ -2 & 0 & 6 & 0 & 0 & 1 \end{bmatrix} \longrightarrow$$

b) Use the elimination process done in point (a) to represent B as a product of elementary matrices.

$$E_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{1}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}, E_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{3} \end{bmatrix}, E_{4}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

$$E_{5} = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{5}^{-1} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = E_{1}^{-1}E_{2}^{-1}E_{3}^{-1}E_{4}^{-1}E_{5}^{-1}I$$

c) Find the number of solutions of the system of linear equations $Ax = \mathbf{b}$, where $A = 2B^4$ and \mathbf{b} is a vector in \mathbb{R}^3 .

$$A = 2B^4 \implies A^{-1} = (2B^4)^{-1} = \frac{1}{2}(B^4)^{-1} = \frac{1}{2}(B^{-1})^4 \implies A^{-1} \text{ exists}$$

A is invertible $\implies Ax = \mathbf{b} \implies A^{-1}Ax = A^{-1}\mathbf{b} \implies x = A^{-1}\mathbf{b} \implies \text{equation has one solution}$

d) Use the inverse B^{-1} obtained in point (a) to find the inverse of the matrix $3B^{T}$.

$$(3B^T)^{-1} = \frac{1}{3}(B^T)^{-1} = \frac{1}{3}(B^{-1})^T = \frac{1}{3} \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ -3 & 0 & -1 \\ 2 & 0 & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{6} & 0 \\ -1 & 0 & -\frac{1}{3} \\ \frac{2}{3} & 0 & -\frac{1}{6} \end{bmatrix}$$

Exercise 8 (10 points).

Use the Gauss-Jordan method to check if the given matrix is invertible or not, and if it is invertible, find its inverse.

a)
$$D = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 7 & 0 \\ 1 & 0 & 5 \end{bmatrix}$$
 over \mathbb{R}

$$\begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & 7 & 0 & 0 & 1 & 0 \\ 1 & 0 & 5 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - \frac{2}{7}R_2} \begin{bmatrix} 0 & 0 & 0 & 1 & -\frac{2}{7} & 0 \\ 0 & 7 & 0 & 0 & 1 & 0 \\ 1 & 0 & 5 & 0 & 0 & 1 \end{bmatrix}$$

This matrix cannot be brought to the identity matrix I_3 with elementary operations, which means it does not have an inverse.

b)
$$E = \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix}$$
 over \mathbb{Z}_7

$$\begin{bmatrix} 5 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \begin{bmatrix} 2 & 3 & 0 & 1 \\ 5 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{4R_1} \begin{bmatrix} 1 & 5 & 0 & 4 \\ 5 & 2 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & 5 & 0 & 4 \\ 0 & 5 & 1 & 1 \end{bmatrix} \longrightarrow \xrightarrow{3R_2} \begin{bmatrix} 1 & 5 & 0 & 4 \\ 0 & 1 & 3 & 3 \end{bmatrix} \xrightarrow{R_1 + 2R_2} \begin{bmatrix} 1 & 0 & 6 & 3 \\ 0 & 1 & 3 & 3 \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 6 & 3 \\ 3 & 3 \end{bmatrix}$$