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16. Figure 5.5.13 shows two railway cars with a buffer spring.

We want to investigate the transfer of momentum that oc-
curs after car 1 with initial velocity vy impacts car 2 at rest.
The analog of Eq. (18) in the text is
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with ¢; = k/m; fori = 1, 2. Show that the eigenvalues of

the coefficient matrix A are A; = 0 and A, = —¢| — ¢2,
) ) ) T
with associated eigenvectors v, = [ 1 1 ] and v, =
T
[ C —Ca ] .

FIGURE 5.5.13. The two railway
cars of Problems 16 through 19.
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17.

If the two cars of Problem 16 both weigh 16 tons (so that
m; = m, = 1000 (slugs)) and k = 1 ton/ft (that is, 2000
Ib/ft), show that the cars separate after /2 seconds, and
that x| () = 0 and x}(#) = v, thereafter. Thus the original
momentum of car 1 is completely transferred to car 2.
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25. Suppose that m = 75 slugs (the car weighs 2400 1b), L, =

7 ft, L, = 3 ft (it’s a rear-engine car), k; = k, = 2000
Ib/ft, and I = 1000 ft-Ib-s>. Then the equations in (40)
take the form

75x” +4000x — 80006 = 0,

10006” — 8000x + 116,0006 = 0.

(a) Find the two natural frequencies @, and w, of the car.
(b) Now suppose that the car is driven at a speed of v feet
per second along a washboard surface shaped like a sine
curve with a wavelength of 40 ft. The result is a periodic
force on the car with frequency w = 27v/40 = mv/20.
Resonance occurs when with w = w; or @ = w». Find the
corresponding two critical speeds of the car (in feet per
second and in miles per hour).
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26. Suppose that k; = k, = kand L, = L, = ;L in
Fig. 5.5.14 (the symmetric situation). Then show that ev-
ery free oscillation is a combination of a vertical oscilla-
tion with frequency

2k/m
and an angular oscillation with frequency
w, = VkL?/(21).
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Find a fundamental matrix of each of the systems in Problems
I through 8, then apply Eq. (8) to find a solution satisfying the
given initial conditions.

1. x’:[? ;:|x x(0)=[_3:|

‘2IA Qik':(2—)\)2—1:/\2—4)\+3:0 — A=2%+1
1 1
)\1_15 Vl_ I:_1:|7 A2_37 V2_ |:1:|
et €3t
‘I’(t): [_et e3t]

1 [e3t —edt 1[et —et
g _
P (t) = 5ol [et o | T g a3t bt
1[et e [1 —1 1[et+e3t —et+e3][3 1 [ 5et + e
X(t) = 5 _6t e3t 1 1 =

—et+edt et et | |—2] T 2 |5t + €3t
Compute the matrix exponential e for each system X' = Ax
given in Problems 9 through 20.
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9. x; =5x; —4xp, x5 =2x; — X2




/ _ 5 _4
X0 =y Ty x
T
)\1 = 3,V1 = [2 1]
T
Yo =1vy=[1 1]
2 1113 0|1 -1
A=l 6 3[ 7]
At |21 et 0 1 -1 2e3t — et —2e3! 4 2¢!
T 1o et =1 2|7 |eBt—et  —e3t 42t
Apply Theorem 3 to calculate the matrix exponential e for
each of the matrices in Problems 35 through 40.
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Page 428 - Problems 8, 17

Apply the method of undetermined coefficients to find a par-
ticular solution of each of the systems in Problems I through
14. If initial conditions are given, find the particular solution
that satisfies these conditions. Primes denote derivatives with
o | respect to t.
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In Problems 17 through 34, use the method of variation of pa-
rameters (and perhaps a computer algebra system) to solve the
initial value problem

X =Ax+ (), x(a)=x,.

In each problem we provide the matrix exponential e as pro-
vided by a computer algebra system.
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