

CS105 Ordinary Differential Equations - Homework 7

Mher Saribekyan A09210183

April 1, 2025

Part 1: Finding the Fourier Series

Consider watching the 3blue1brown video on Fourier series: https://www.youtube.com/watch?v=r6sGWTCMz2k

Problem 1: Find the Fourier series of the following periodic functions:

a) $f(t) = 2\sin\left(t - \frac{\pi}{3}\right)$ (hint: easier than it seems)

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} 2 \sin\left(t - \frac{\pi}{3}\right) dt = 0$$

$$a_{m} = \frac{1}{\pi} \int_{0}^{2\pi} 2 \sin\left(t - \frac{\pi}{3}\right) \cdot \cos(mt) dt = \frac{1}{\pi} \int_{0}^{2\pi} \sin\left((m+1)t - \frac{\pi}{3}\right) - \sin\left(\frac{\pi}{3} + (m-1)t\right) dt$$

$$a_{1} = \frac{1}{\pi} \left[-\frac{1}{2} \cos\left(2t - \frac{\pi}{3}\right) - t \sin\left(\frac{\pi}{3}\right) \right]_{0}^{2\pi} = -\sqrt{3}, a_{m} = 0, m \neq 1$$

$$b_{m} = \frac{1}{\pi} \int_{0}^{2\pi} 2 \sin\left(t - \frac{\pi}{3}\right) \cdot \sin(mt) dt = \frac{1}{\pi} \int_{0}^{2\pi} \cos\left((m+1)t - \frac{\pi}{3}\right) + \cos\left((m-1)t - \frac{\pi}{3}\right) dt$$

$$b_{1} = \frac{1}{\pi} \left[\frac{1}{2} \sin\left(2t - \frac{\pi}{3}\right) + t \cos\left(\frac{\pi}{3}\right) \right]_{0}^{2\pi} = 1, b_{m} = 0, m \neq 1$$

$$\therefore f(t) = \sin(t) - \sqrt{3} \cos(t)$$

b) f(t) = |t| in the interval $t \in [-\pi, \pi]$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \, dt = \pi$$

$$a_{m} = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \cos(mt) \, dt \stackrel{\text{even}}{=} \frac{2}{\pi} \int_{0}^{\pi} t \cos(mt) \, dt = \left[\frac{2}{\pi} t \sin(mt) \right]_{0}^{\pi} - \frac{2}{m\pi} \int_{0}^{\pi} \sin(mt) \, dt$$

$$= \frac{2}{m^{2}\pi} \left[\cos(mt) \right]_{0}^{\pi}$$

If m is even, $a_m = 0$. If m is odd, $a_m = -\frac{4}{m^2\pi}$.

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \sin(mt) dt \stackrel{\text{odd}}{=} 0$$

$$\therefore f(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \cos((2n+1)t)$$

Recall the square wave function we analyzed during the lecture: SQ(t) = -1, for $t \in \left[-\frac{T}{2}, 0 \right)$ and SQ(t) = 1 for $t \in \left[0, \frac{T}{2} \right)$. Find the Fourier series of

c)
$$SQ(t-1)$$
 when $T=4$

$$a_{0} = \frac{1}{2} \int_{-2}^{2} SQ(t-1) \, dt = -1$$

$$a_{m} = \frac{1}{2} \int_{-2}^{2} SQ(t-1) \cos(m\pi t) \, dt = \frac{1}{2} \int_{1}^{2} \cos(m\pi t) \, dt - \frac{1}{2} \int_{-2}^{1} \cos(m\pi t) \, dt$$

$$= \frac{1}{2m\pi} \left(\sin(m\pi) - \sin\left(\frac{m\pi}{2}\right) - \sin\left(\frac{m\pi}{2}\right) + \sin(-m\pi) \right) = -\frac{2}{m\pi} \sin\left(\frac{m\pi}{2}\right)$$

$$b_{m} = \frac{1}{2} \int_{-2}^{2} SQ(t-1) \sin(m\pi t) \, dt = \frac{1}{2} \int_{1}^{2} \sin(m\pi t) \, dt - \frac{1}{2} \int_{-2}^{1} \sin(m\pi t) \, dt$$

$$= \frac{1}{2m\pi} \left(-\cos(m\pi) + \cos\left(\frac{m\pi}{2}\right) + \cos\left(\frac{m\pi}{2}\right) - \cos(-m\pi) \right) = \frac{2}{m\pi} \left(\cos\left(\frac{m\pi}{2}\right) - \cos(m\pi) \right)$$

$$\therefore SQ(t-1) = -\frac{1}{2} + \sum_{n=1}^{\infty} \left(-\frac{2}{n\pi} \sin\left(\frac{\pi n}{2}\right) \cos\left(\frac{\pi n}{2}t\right) \right) + \sum_{n=1}^{\infty} \left(\frac{2}{n\pi} \left(\cos\left(\frac{n\pi}{2}\right) - \cos(n\pi)\right) \sin\left(\frac{\pi n}{2}t\right) \right)$$

d)
$$1 + SQ(2\pi t)$$
 when $T = 2$

$$a_0 = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} 1 + SQ(t) dt = 2$$

$$a_m = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} (1 + SQ(t)) \cos\left(\frac{mt}{2}\right) dt = 0$$

$$b_m = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} (1 + SQ(t)) \sin\left(\frac{mt}{2}\right) dt = \frac{1}{\pi} \int_0^{2\pi} \sin\left(\frac{mt}{2}\right) dt = -\frac{2}{m\pi} \left(\cos(\pi m) - 1\right)$$

$$\therefore 1 + SQ(2\pi t) = 1 - \sum_{n=0}^{\infty} \frac{2}{(2n+1)\pi} \left(\cos\left(\pi (2n+1)\right) - 1\right) \left(\sin\left(\frac{(2n+1)t}{2}\right)\right)$$

Part 2: Solving ODEs

If you have an engineering focus, consider watching the special MIT lecture: https://www.youtube.com/watch?v=pRIEYR5JHQA&list=PLEC88901EBADDD980&index=18

Another physical system that is well described by a 2nd order linear ODE with constant coefficients is the vibration of the trampoline - a beam of solid material (like wood) that has much more width than thickness (imagine the trampoline the swimmers use for diving). The tip of the trampoline satisfies the ODE:

$$y'' + by' + \omega_0^2 y = F(t)$$

where F(t) is the external force, ω_0 is the natural frequency, and b represents the damping. Since the trampoline is made of real material, as it bends there is a build up of internal strains. The strains have a critical threshold after which the trampoline breaks (if it is wood, for example) or bends in a non-reversible way (if it is aluminum, for example). Such non-reversible bending is called plastic deformation, whereas the reversible bending that happens while it obeys the ODE is called elastic deformation.

Assume F(t) = SQ(t), where SQ(t) is the square wave function with period T = 2s.

Take $b = 1s^{-1}$, $\omega_0 = 5rad/s$ and assume the maximum amplitude the tip of the trampoline can reach before breaking is $|y_c| = 0.15m$.

a) Use the Fourier series of F(t) to find the Fourier series of the particular solution $y_p(t)$.

It is trivial that: $F(t) = \sum_{n=1}^{\infty} \left(-\frac{2}{n\pi} \left((-1)^n - 1 \right) \sin \left(n\pi \ t \right) \right)$. Using the assumption and calculations in HW6 Problem 4, it is obvious that:

$$y_p = \frac{A(\omega_0^2 - \omega^2)}{b^2 \omega^2 + (\omega_0^2 - \omega^2)^2} \sin(\omega t) + \frac{Ab\omega}{b^2 \omega^2 + (\omega_0^2 - \omega^2)^2} \cos(\omega t)$$

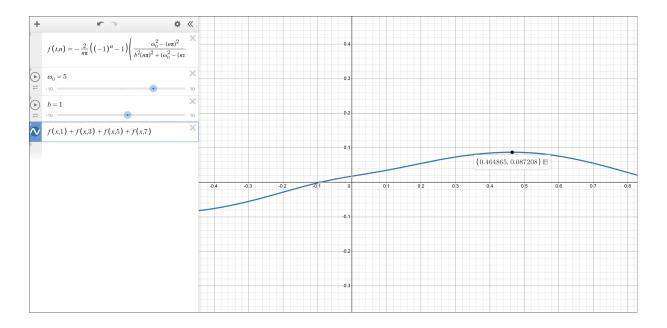
Therefore, the solution to our equation is:

$$y_p = -\frac{2}{n\pi} \sum_{n=1}^{\infty} \left((-1)^n - 1 \right) \left(\frac{\omega_0^2 - (n\pi)^2}{b^2 (n\pi)^2 + (\omega_0^2 - (n\pi)^2)^2} \sin(n\pi \ t) + \frac{b(n\pi)}{b^2 (n\pi)^2 + (\omega_0^2 - (n\pi)^2)^2} \cos(n\pi \ t) \right)$$

b) Determine the 4 terms in the infinite sum of $y_p(t)$ that contribute the most to the motion (have the highest amplitudes).

The terms n = 1, 3, 5, 7 have the highest contribution to the motion.

c) Use a plotting tool (such as Desmos) to plot the sum of these 4 terms, and determine the maximum value the resulting function reaches.



The maximum value is $y_{\text{max}} = 0.087$.

d) Does the trampoline break from the analysis of just these 4 terms?

Nope, not even close.

Hint: You can use the results from HW 6 problem 4 to shorten your time spent on this problem.