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CS105 Ordinary Differential Equations - Homework 7

Mher Saribekyan A09210183

April 1, 2025

Part 1: Finding the Fourier Series

Consider watching the 3bluelbrown video on Fourier series:
https://wuw.youtube.com/watch?v=r6sGWTCMz2k

Problem 1: Find the Fourier series of the following periodic functions:

a) f(t) =2sin (t — %) (hint: easier than it seems)
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- f(t) = sin(t) — v/3cos(t)
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b) f(t) = |t| in the interval ¢t € [—, 7]
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If m is even, a,, = 0. If m is odd, a,, = —
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Recall the square wave function we analyzed during the lecture: SQ(t) = —1, for t € [—2, 0) and
T
SQ(t)=1fort e [O, 2). Find the Fourier series of
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d) 1+ SQ(2nt) when T =2
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Part 2: Solving ODEs

If you have an engineering focus, consider watching the special MIT lecture:
https://www.youtube.com/watch?v=pRIEYR5JHQA&11ist=PLEC88901EBADDD980&index=18

Another physical system that is well described by a 2nd order linear ODE with constant coefficients is
the vibration of the trampoline - a beam of solid material (like wood) that has much more width than
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thickness (imagine the trampoline the swimmers use for diving). The tip of the trampoline satisfies the
ODE:
y' + by +wiy = F(t)

where F'(t) is the external force, wqy is the natural frequency, and b represents the damping. Since the
trampoline is made of real material, as it bends there is a build up of internal strains. The strains have a
critical threshold after which the trampoline breaks (if it is wood, for example) or bends in a non-reversible
way (if it is aluminum, for example). Such non-reversible bending is called plastic deformation, whereas
the reversible bending that happens while it obeys the ODE is called elastic deformation.

Assume F(t) = SQ(t), where SQ(t) is the square wave function with period T = 2s.

Take b = 157!, wg = 5rad/s and assume the maximum amplitude the tip of the trampoline can reach
before breaking is |y.| = 0.15m.

a) Use the Fourier series of F'(t) to find the Fourier series of the particular solution y,(t).

o0
2
It is trivial that: F(t) = g (— ((=1)" = 1)sin (n7 t)) Using the assumption and calculations
nm

n=1

in HW6 Problem 4, it is obvious that:

AWt () + Abw st
Yp = b2w2 + (wg — w?)2 D202 + (wg — )2
Therefore, the solution to our equation is:
2y wg — (nm)? : b(n)
yp nim — (( ) ) <b2(n7T)2 + (wg _ (717'[')2)2 Sln(nﬂ' ) + b2(n7'(')2 + (W(Q] — (7’L7T)2)2 COS(TLT(' )

b) Determine the 4 terms in the infinite sum of y,(¢) that contribute the most to the motion (have the
highest amplitudes).

The terms n = 1, 3, 5,7 have the highest contribution to the motion.

c¢) Use a plotting tool (such as Desmos) to plot the sum of these 4 terms, and determine the maximum
value the resulting function reaches.
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The maximum value is ymax = 0.087.

d) Does the trampoline break from the analysis of just these 4 terms?

Nope, not even close.

Hint: You can use the results from HW 6 problem 4 to shorten your time spent on this problem.



