

CS105 Ordinary Differential Equations - Homework 9

Mher Saribekyan A09210183

April 22, 2025

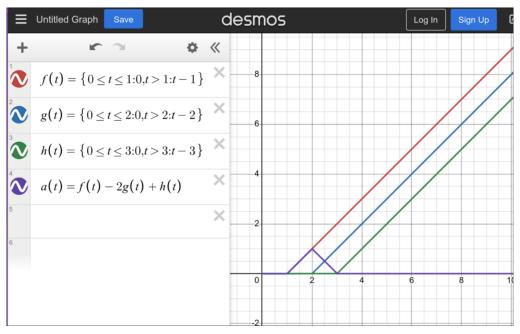
Part 1

Page 307 Problem 14

$$y'' - 4y' + 4y = 0; \ y(0) = 1, \ y'(0) = 1$$
$$s^{2}Y(s) - sy(0) - y'(0) - 4(sY(s) - y(0)) + 4Y(s) = 0$$
$$s^{2}Y(s) - s - 1 - 4sY(s) + 4 + 4Y(s) = 0 \implies Y(s)(s^{2} - 4s + 4) = s - 3$$
$$Y(s) = \frac{s - 3}{(s - 2)^{2}} = \frac{1}{s - 2} - \frac{1}{(s - 2)^{2}} \implies y(t) = e^{2t} - te^{2t}$$

Page 314 Problem 6, then find its Laplace transform

In each of Problems 1 through 6 sketch the graph of the given function on the interval $t \ge 0$. $f(t) = (t-1)u_1(t) - 2(t-2)u_2(t) + (t-3)u_3(t)$



$$\mathcal{L}[f(t)](s) = \frac{e^{-s}}{s^2} - \frac{2e^{-2s}}{s^2} + \frac{e^{-3s}}{s^2}$$

Page 321 Problem 2

In each of Problems 1 through 13 find the solution of the given initial value problem. Draw the graphs of the solution and of the forcing function; explain how they are related.

$$y'' + 2y' + 2y = h(t); \ y(0) = 0, \ y'(0) = 1; \ h(t) = \begin{cases} 1, \pi \le t < 2\pi \\ 0, 0 \le t < \pi \text{ and } t \ge 2\pi \end{cases}$$

$$y'' + 2y' + 2y = u_{\pi}(t) - u_{2\pi}(t) - 1$$

$$Y(s)(s^{2} + 2s + 2) = \frac{e^{-\pi s} - e^{-2\pi s}}{s} + 1$$

$$Y(s) = \frac{e^{-\pi s}}{s(s^{2} + 2s + 2)} - \frac{e^{-2\pi s}}{s(s^{2} + 2s + 2)} + \frac{1}{s^{2} + 2s + 2}$$

$$Y(s) = e^{-\pi s} \left(\frac{1}{2s} + \frac{\frac{-s - 2}{2}}{(s + 1)^{2} + 1}\right) + e^{-2\pi s} \left(\frac{1}{2s} + \frac{\frac{-s - 2}{2}}{(s + 1)^{2} + 1}\right) + \frac{1}{(s + 1)^{2} + 1}$$

$$\therefore y(t) = u_{\pi}(t) \left(\frac{1}{2} + \frac{e^{-(t - \pi)}\cos t}{2} + \frac{e^{-(t - \pi)}\sin t}{2}\right) - u_{2\pi}(t) \left(\frac{1}{2} - \frac{e^{-(t - 2\pi)}\cos t}{2} - \frac{e^{-(t - 2)}\sin t}{2}\right) + e^{-t}\sin t$$

Page 328 Problem 5

In each of Problems 1 through 12 find the solution of the given initial value problem and draw its graph.

$$y'' + 2y' + 3y = \sin t + \delta(t - 3\pi); \ y(0) = 0, \ y'(0) = 0$$

$$s^{2}Y(s) + 2sY(s) + 3Y(s) = \frac{1}{s^{2} + 1} + e^{-3\pi s}$$

$$Y(s) = \frac{1}{(s^{2} + 2s + 3)(s^{2} + 1)} + \frac{e^{-3\pi s}}{s^{2} + 2s + 3}$$

$$Y(s) = \frac{0.25(s + 1)}{(s + 1)^{2} + 2} - \frac{0.25(s - 1)}{s^{2} + 1} + \frac{e^{-3\pi s}}{(s + 1)^{2} + 2}$$

$$y(t) = \frac{1}{4}e^{-t}\cos\left(\sqrt{2}t\right) - \frac{1}{4}\cos(t) + \frac{1}{4}\sin(t) + \frac{1}{\sqrt{2}}u_{3\pi}e^{-(t - 3\pi)}\sin\left(\sqrt{(2)(t - 3\pi)}\right)$$

Part 2

Suppose you have an LRC circuit that is described by the ODE.

$$LQ'' + RQ' + \frac{1}{C}Q = 0$$

You are too lazy to read the specs for the elements of the circuit and instead decide to use a clever trick to find the parameters L, R, C. You monitor the charge on the capacitor over time, Q(t), after applying a short strong pulse of voltage at t = 0 to the system at rest. That is, Q(0) = Q'(0) = 0.

You tune your voltage pulse such that its time integral is equal to 1. As we discussed in class, the

response Q(t) to such an input should be almost the same as the response to a delta function $\delta(t)$. You find that the response Q(t) closely follows the analytic function

$$Q(t) = \frac{1}{2} \left(e^{-t} - e^{-2t} \right)$$

Assuming this function is the actual response to $\delta(t)$, use it to find the parameters L, R, C.

$$LQ'' + RQ' + \frac{1}{C}Q = \delta(t)$$

$$LY(s)s^2 + RY(s)s + \frac{Y(s)}{C} = 1 \implies Y(s) = \frac{1}{Ls^2 + Rs + \frac{1}{C}}$$

$$Q(t) = \frac{1}{2}\left(e^{-t} - e^{-2t}\right) \implies Y(s) = \frac{\frac{1}{2}}{s+1} - \frac{\frac{1}{2}}{s+2} = \frac{1}{2s^2 + 6s + 4}$$

$$\therefore L = 2, R = 6, C = \frac{1}{4}$$