
CS226 Math Modeling Applications - Homework 1

Mher Saribekyan A09210183

December 11, 2024

Digital version

Problem 1 (15 points).

We start with N bacteria in a controlled environment with infinite food to grow. Each small time step ∆t
there is a small probability γ∆t for each bacteria to double (assume that each doubling is an independent
process

(a) Derive the discrete time master equation of exponential growth. (5 points)

wM−1→M = P(M |M − 1;∆t) = (M − 1)γ∆t

PM (t+∆t) = PM (t) · (1−Mγ∆t) + (PM (t) · (M − 1)γ∆t− PM+1(t) · 0)

∴ PM (t+∆t) = PM (t) · (1−Mγ∆t) + PM−1(t) · (M − 1)γ∆t

(b) Derive the continuous time master equation of exponential growth. (5 points)

PM (t+∆t)− PM (t) = PM (t) · (−Mγ∆t) + PM−1(t) · (M − 1)γ∆t

PM (t+∆t)− PM (t)

∆t
= PM (t) · (−Mγ) + PM−1(t) · (M − 1)γ

∴ ṖM (t) = −MγPM (t) + (M − 1)γPM−1(t)

(c) What is the equation of the average number of bacteria depending on time? (5 points)

n(t) =
∞∑

M=N

MPM (t)

ṅ(t) =
∞∑

M=N

MṖM (t) =
∞∑

M=N

M(−MγPM (t) + (M − 1)γPM−1(t))

=

∞∑
M=N

M((M − 1)γPM−1(t)−MγPM (t)) = γ

∞∑
M=N

(M − 1)MPM−1(t)−M2PM (t)

= γ

(∞∑
M=N−1

M(M + 1)PM (t)−
∞∑

M=N

M2PM (t)

)
= γ

∞∑
M=N

MPM (t) = γn(t)

n(t) = αeγt, α ∈ R

1

Problem 2 (30 points).

Change from the previous problem the probability for each bacteria to double. Instead of γ∆t take
γ(1− βM)∆t where M is the amount of bacteria currently in the system.

(a) Derive the discrete time master equation (5 points)

Same as last problem, except take the probability of doubling as γ(1− βM), where M is the current
number of bacteria.

∴ PM (t+∆t) = PM (t) · (1−Mγ(1− βM)∆t) + PM−1(t) · (M − 1)γ(1− β(M − 1))∆t

(b) Derive the continuous time master equation (5 points)

Same as last problem, except take γ = (1− βM).

∴ ṖM (t) = −Mγ(1− βM)PM (t) + (M − 1)γ(1− β(M − 1))PM−1(t)

(c) Derive the equation of the average number of bacteria depending on time (10 points)

Now this one is not that simple, we need to open the brackets and see what happens.

n(t) =
∞∑

M=N

MPM (t)

ṅ(t) =

∞∑
M=N

MṖM (t) =

∞∑
M=N

M(−Mγ(1− βM)PM (t) + (M − 1)γ(1− β(M − 1))PM−1(t))

= γ
∞∑

M=N

M(M − 1)(1− β(M − 1))PM−1(t)−M2(1− βM)PM (t)

= γ
∞∑

M=N

M(M − 1)PM−1(t)−M2PM (t) + βM3PM (t)− βM(M − 1)2PM−1(t)

= γ

(∞∑
M=N

(M + 1)(M)PM (t)−
∞∑

M=N

M2PM (t) +

∞∑
M=N

βM3PM (t)−
∞∑

M=N

β(M + 1)M2PM (t)

)

= γ

(∞∑
M=N

MPM (t)−
∞∑

M=N

βM2PM (t)

)
= γ

(
n(t)− β(Var(M)(t) + (n(t))2)

)
(d) Is detailed balance possible in this system? If so, what is the solution of detailed balance? (10 points)

The equation of equilibrium:∑
j

P̄jwj→i = P̄i

∑
wi→j =⇒ ṖM (t)wM→M−1 = ṖM+1(t)wM−1→M

2

The rate from going from M + 1 to M is always zero, because our system only models doubling of
bacteria. Hence:

ṖM−1(t)wM−1→M = 0

(−Mγ(1− βM)PM (t) + (M − 1)γ(1− β(M − 1))PM−1(t)) · (M − 1)γ(1− β(M − 1)) = 0

∴ 1− β(M − 1) = 0 =⇒ M =
1

β
+ 1

Problem 3 (15 points).

We start with N = 1000 particles of Uranium that decays into Thorium.

(a) Take the probability of decay γ = 0.001 (5 points)
Write a function simulate() that will use an N sized array to store integers 0 and 1 representing Th
and U to loop over the array and with γ probability of change from 1 to 0 while skipping over the
zeroes. This loop should be done K = 100 times. The function should return a K sized array of the
amount of Uranium after each step.

import random

import numpy as np

import matplotlib.pyplot as plt

N = 1000

K = 100

gamma = 0.001

def simulate():

uraniums = np.full(K,N)

atoms = np.ones(N)

for i in range(K):

if i != 0:

uraniums[i] = uraniums[i-1]

for j in range(N):

if atoms[j] == 0:

continue

if random.random() < gamma:

atoms[j] = 0

uraniums[i]-=1

return uraniums

3

(b) Take β = 0.0001 (5 points)
Now write a new function simulate square() where the only difference is that the probability of change
is γ(1− βM) where M is the amount of Uranium on the previous step.

import random

import numpy as np

import matplotlib.pyplot as plt

N = 1000

K = 100

gamma = 0.001

beta = 0.0001

def simulate_square():

uraniums = np.full(K,N)

atoms = np.ones(N)

for i in range(K):

if i != 0:

uraniums[i] = uraniums[i-1]

u0 = uraniums[i]

for j in range(N):

if atoms[j] == 0:

continue

if random.random() < gamma*(1-beta*u0):

atoms[j] = 0

uraniums[i]-=1

return uraniums

(c) Repeat these simulations many times and take their respective averages. After that plot them and
discuss the differences and their reasons. (5 points)

4

The calculations were ran with K = 500 and γ = 0.01, to make the exponential decay more visible.
At first, our initial model decays faster than the second model, but with less Uranium atoms left,
the second model started to decay faster than the initial model. This can be concluded from the
probabilities, as γ(1 − βM) means that the less Uranium atoms are left, the higher the probability
of a decay.

5

