

ENGS121 Mechanics Section C - Homework 2

Mher Saribekyan A09210183

February 11, 2024

Problem 1.

Given three vectors \vec{A} , \vec{B} , \vec{C} . Their magnitudes are given in arbitrary units.

$$\vec{A} = \begin{bmatrix} x_A \\ y_A \end{bmatrix}, \vec{B} = \begin{bmatrix} x_B \\ y_B \end{bmatrix}, \vec{C} = \begin{bmatrix} x_C \\ y_C \end{bmatrix}$$

(a) Give the resultant vector in terms of components.

Resultant vector is
$$\vec{d} = \begin{bmatrix} x_d \\ y_d \end{bmatrix} = \vec{A} + \vec{B} + \vec{C} = \begin{bmatrix} x_A + x_B + x_C \\ y_A + y_B + y_C \end{bmatrix}$$

(b) Give the resultant vector in terms of magnitude.

$$\left\| \vec{d} \right\| = \sqrt{\left(x_d\right)^2 + \left(y_d\right)^2}$$

(c) Give the angle with the +x axis.

Angle between x axis
$$= \theta = \arctan\left(\frac{y_d}{x_d}\right)$$

If
$$x_d \leq 0, y_d \leq 0 \implies \varphi = |\pi - \theta|$$

If
$$x_d \le 0, y_d \ge 0 \implies \varphi = \theta + \pi$$

(d) Determine the magnitude of $\vec{A} - \vec{C}$, show that it's the same as $\vec{C} - \vec{A}$.

$$\|\vec{A} - \vec{C}\| = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2} = \sqrt{(x_C - x_A)^2 + (y_C - y_A)^2} = \|\vec{C} - \vec{A}\|$$

(e) Determine the magnitude of $2\vec{A} - 4\vec{B} + 2\vec{C}$.

$$\left\| 2\vec{A} - 4\vec{B} + 2\vec{C} \right\| = \sqrt{(2x_A - 4x_B + 2x_C)^2 + (2y_A - 4y_B + 2y_C)^2}$$

(f) Determine the magnitude of $\vec{A} - \vec{B} - \vec{C}$

$$\|\vec{A} - \vec{B} - \vec{C}\| = \sqrt{(x_A - x_B - x_C)^2 + (y_A - y_B - y_C)^2}$$

Problem 2.

A projectile is shot from the edge of a cliff 115m above ground level with an initial speed of 65.0ms at an angle of 35.0° with the horizontal.

- (a) Determine the time taken by the projectile to hit point P at ground level.
 - Since the projectile goes upwards and then downwards, we can split the displacement into two parts, from where the projectile is shot to where it reaches the same level (t_1) , and where the projectile falls from that level to the ground (t_2) .

At starting point the velocity is v_0 , while at the topmost point it is 0, because of a constant acceleration of g downwards.

$$g = \frac{\Delta v}{t} = \frac{v_0 \sin \alpha - 0}{t} \implies t_{\text{up}} = \frac{v_0 \sin \alpha}{q} = \frac{65.0 \cdot \sin(35.0^\circ)}{9.8} = 3.8s$$

Because of symmetry $t_1 = 2 \cdot t_{\rm up} = 7.6$ s

$$S = v_0 \sin(\alpha)t_2 + \frac{gt_2^2}{2} \implies 115 = 65\sin(35.0^\circ)t_2 + \frac{9.8 \cdot t_2^2}{2}$$

$$\implies 4.9t_2^2 + 37.3t_2 - 115 = 0 \text{ and } t_2 > 0 \implies t_2 = 2.4s \implies t = t_1 + t_2 = 2.4 + 7.6 = 10s$$

(b) Determine the distance X of point P from the base of the vertical cliff. At the instant just before the projectile hits point P.

$$v_{\text{vertical}} = \text{constant} \implies S = v_0 \cos \alpha \cdot t = 65.0 \cos(35.0^{\circ}) \cdot 10 = 532 \text{m}$$

(c) Find the horizontal and the vertical components of its velocity.

$$v_{\text{vertical}} = v_{\text{0vertical}} + gt_2 = 65\sin(35.0^{\circ}) + 9.8 \cdot 2.4 = 61\text{m/s}$$

 $v_{\text{horizontal}} = \text{constant} = 65.0\cos(35.0^{\circ}) = 53\text{m/s}$

(d) Find the magnitude of the velocity.

$$v = \sqrt{v_{\text{vertical}}^2 + v_{\text{horizontal}}^2} = \sqrt{61^2 + 53^2} = 81 \text{m/s}$$

(e) Find the angle made by the velocity vector with the horizontal.

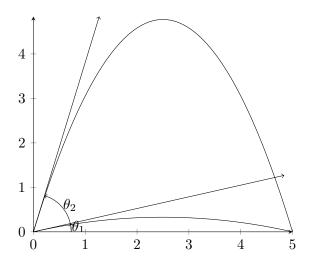
$$\varphi = \arctan\left(\frac{v_{\text{vertical}}}{v_{\text{horizontal}}}\right) = \arctan\left(\frac{61}{53}\right) = 49.0^{\circ}$$

(f) Find the maximum height above the cliff top reached by the projectile.

$$H = h + v_0 \sin \alpha t_{\rm up} - \frac{gt_{\rm up}^2}{2} = 65\sin(35.0^\circ)3.8 - \frac{9.8 \cdot 3.8^2}{2} = 186$$

Problem 3.

A fire hose held near the ground shoots water at a speed of 10m/s.


(a) At what angle(s) should the nozzle point in order that the water land 5 m away.

$$t = 2 \cdot \frac{v_0 \sin(\theta)}{g} \text{ and } S = v_0 \cos(\theta) t = \frac{v_0^2 \sin(2\theta)}{g}$$

$$\theta = \frac{1}{2} \sin\left(\frac{gS}{v_0^2}\right) = \frac{1}{2} \sin\left(\frac{9.8 \cdot 5}{10^2}\right) \implies \theta_1 = 14.7^{\circ} \text{ and } \theta_2 = 75.3^{\circ}$$

- (b) Why are there two different angles?

 The maximum distance an object can travel is when it is thrown at a 45° angle. From angles 0° to 45° the distance increases, while from 45° to 90° it decreases, which is why we have two angles in those two intervals.
- (c) Sketch the two trajectories.

