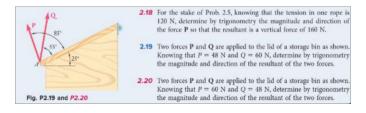


ENGS141 Engineering Statics - Homework 1

Mher Saribekyan A09210183

January 31, 2025

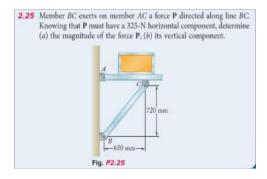
Problem 10 (8 points).



Denote the vertical axis y, and the horizontal axis x. Since no vertical component:

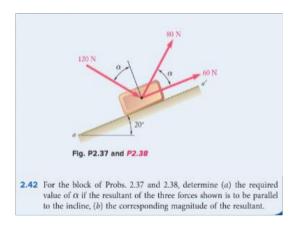
$$P_y = 35 \sin \alpha = 50 \sin 25^\circ \implies \alpha \approx 37.1^\circ$$

$$\|\mathbf{R}\| = R_x = 35\cos\alpha + 50\cos 25^\circ \approx 73.2N$$


Problem 20 (8 points).

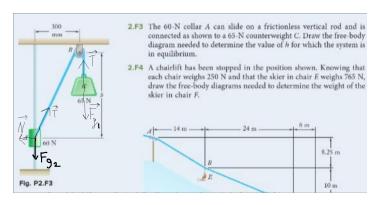
Denote the vertical axis y, and the horizontal axis x, the resultant force \mathbf{R} .

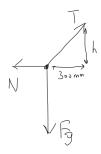
$$\mathbf{R} = \begin{bmatrix} P_x + Q_x \\ P_y + Q_y \end{bmatrix} = \begin{bmatrix} 60\cos 110^\circ + 48\cos 80^\circ \\ 60\sin 110^\circ + 48\sin 80^\circ \end{bmatrix} \approx \begin{bmatrix} -12.2 \\ 103.7 \end{bmatrix} N$$


Problem 25 (8 points).

Denote the vertical axis y, and the horizontal axis x.

$$BC = \sqrt{720^2 + 650^2} = 970mm \implies \|\mathbf{P}\| = 325 \cdot \frac{970}{650} = 485N, P_y = 325 \cdot \frac{720}{650} = 360N$$

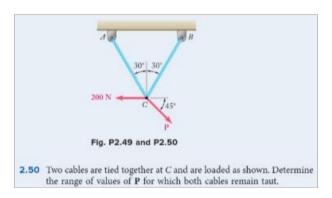

Problem 42 (8 points).



Denote the axis of incline x, and axis perpendicular to it y, and the resultant force \mathbf{R} . From the problem we have:

$$R_y = 0 \implies 80 \sin \alpha - 120 \cos \alpha = 0 \implies \alpha \approx 56.3^{\circ} \implies \|\mathbf{R}\| = R_x = 60 + 80 \cos \alpha + 120 \sin \alpha \approx 204.2N$$

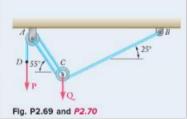
Problem 2F3 (8 points).



Denote the vertical axis y, and the horizontal axis x.

$$F_{g1} = T, F_{g2} = T \cdot \frac{h}{\sqrt{300^2 + h^2}} \implies 65^2 h^2 = 60^2 (300^2 + h^2) \implies h = 720mm$$

Problem 50 (8 points).



Denote the vertical axis y, and the horizontal axis x. To keep the cables taut, the resultant force should be directed downwards, between the lines AC and AB. To find the range, we need to find the two end points.

$$\mathbf{R} = \begin{bmatrix} P\cos 45^{\circ} - 200 \\ -P\sin 45^{\circ} \end{bmatrix} \implies \tan -30^{\circ} = -\frac{1}{\sqrt{3}} \le \frac{P\cos 45^{\circ} - 200}{P\sin 45^{\circ}} \le \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$
$$-\frac{P}{\sqrt{6}} = \frac{P}{\sqrt{2}} - 200 \implies P_0 \approx 179.3N, \frac{P}{\sqrt{6}} = \frac{P}{\sqrt{2}} - 200 \implies P_0 \approx 669.2N$$
$$\therefore P \in [179.3, 669.2]N$$

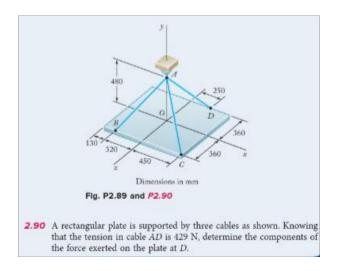
Problem 70 (8 points).

- 2.69 A load Q is applied to pulley C, which can roll on the cable ACB. The pulley is held in the position shown by a second cable CAD, which passes over the pulley A and supports a load P. Knowing that P = 750 N, determine (a) the tension in cable ACB, (b) the magnitude of load Q.
- 2.70 An 1800-N load Q is applied to pulley C, which can roll on the cable ACB. The pulley is held in the position shown by a second cable CAD, which passes over the pulley A and supports a load P. Determine (a) the tension in cable ACB, (b) the magnitude of load P.

Denote the vertical axis y, and the horizontal axis x. Newton's second law was used for each component:

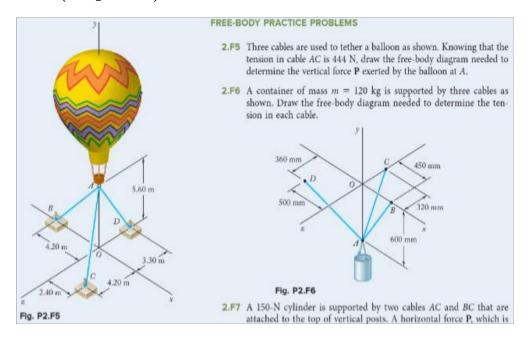
$$\begin{cases} T_{ACB}(\sin 55^{\circ} + \sin 25^{\circ}) + T_{DAC}\sin 55^{\circ} = 1800 \\ T_{ACB}(\cos 25^{\circ} - \cos 55^{\circ}) - T_{DAC}\cos 55^{\circ} = 0 \end{cases} \implies \begin{bmatrix} \sin 55^{\circ} + \sin 25^{\circ} & \sin 55^{\circ} \\ \cos 25^{\circ} - \cos 55^{\circ} & \cos 55^{\circ} \end{bmatrix} \begin{bmatrix} T_{ACB} \\ T_{DAC} \end{bmatrix} = \begin{bmatrix} 1800 \\ 0 \end{bmatrix}$$

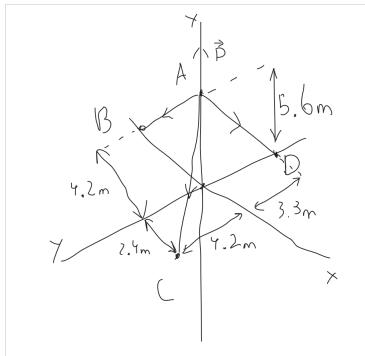
$$T_{ACB} = 1050N$$
 and $P = T_{DAC} = 608N$


Problem 80 (8 points).

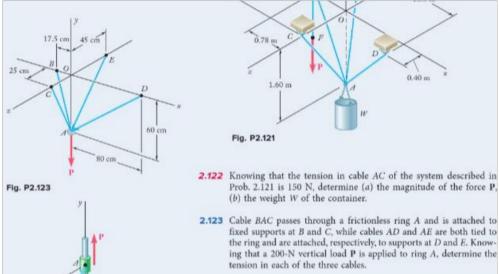
2.80 Determine the magnitude and direction of the force F = (320 N)i + (400 N)j - (250 N)k.

$$\|\mathbf{F}\| = \sqrt{320^2 + 400^2 + 250^2} = 570N$$


$$\alpha_x = \arccos\left(\frac{320}{570}\right) \approx 55.8^\circ, \alpha_y = \arccos\left(\frac{400}{570}\right) \approx 45.4^\circ, \alpha_z = \arccos\left(\frac{-250}{570}\right) \approx 116.0^\circ$$


Problem 90 (8 points).

$$AD = \sqrt{250^2 + 480^2 + 360^2} = 650 \implies F = \begin{bmatrix} -429 \cdot \frac{250}{650} \\ 429 \cdot \frac{480}{650} \\ 429 \cdot \frac{360}{650} \end{bmatrix} = \begin{bmatrix} -165N \\ 316.8N \\ 237.6N \end{bmatrix}$$


Problem 2F5 (13 points).

$$\mathbf{T}_{AC} = T_{AC} \begin{bmatrix} \frac{4.2}{\sqrt{4.2^2 + 2.4^2 + 5.6^2}} \\ \frac{2.4}{\sqrt{4.2^2 + 2.4^2 + 5.6^2}} \\ -\frac{5.6}{\sqrt{4.2^2 + 2.4^2 + 5.6^2}} \end{bmatrix} = \begin{bmatrix} 252 \\ 144 \\ 336 \end{bmatrix} N \implies T_{AB_y} = 336N, T_{AD_y} = -570N \implies P = 1050N$$

Problem 123 (15 points).

$$\begin{split} \mathbf{T}_{AB} &= T_{BAC} \begin{bmatrix} -\frac{17.5}{\sqrt{17.5^2 + 60^2}} \\ \frac{60}{\sqrt{17.5^2 + 60^2}} \\ 0 \end{bmatrix} = T_{BAC} \begin{bmatrix} -0.28 \\ 0.96 \\ 0 \end{bmatrix} \\ \mathbf{T}_{AC} &= T_{BAC} \begin{bmatrix} 0 \\ \frac{60}{\sqrt{25^2 + 60^2}} \\ frac25\sqrt{25^2 + 60^2} \end{bmatrix} = T_{BAC} \begin{bmatrix} 0 \\ 12/13 \\ 5/13 \end{bmatrix} \\ \mathbf{T}_{AD} &= T_{AD} \begin{bmatrix} \frac{80}{\sqrt{80^2 + 60^2}} \\ 0 \end{bmatrix} = T_{AD} \begin{bmatrix} 0.8 \\ 0.6 \\ 0 \end{bmatrix} \\ \mathbf{T}_{AE} &= T_{AE} \begin{bmatrix} 0 \\ \frac{60}{\sqrt{45^2 + 60^2}} \\ -\frac{1}{\sqrt{45^2 + 60^2}} \end{bmatrix} = T_{AE} \begin{bmatrix} 0 \\ 0.8 \\ -0.6 \end{bmatrix} \\ \begin{bmatrix} -0.28T_{BAC} + 0.8T_{AD} = 0 \\ (0.96 - 12/13)T_{BAC} - 0.6T_{AD} + 0.8T_{AE} = 200 \\ 5/13T_{BAC} - 0.6T_{AE} = 0 \end{bmatrix} \implies \begin{cases} T_{BAC} \approx 76.7N \\ T_{AD} \approx 26.9N \\ T_{AE} \approx 49.2N \end{split}$$