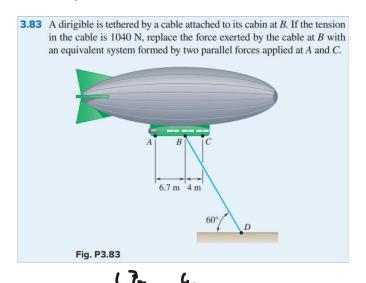

ENGS141 Engineering Statics - Homework 3

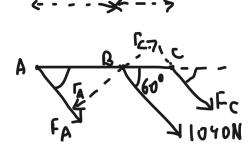
Mher Saribekyan A09210183

February 16, 2025

Problem 3.81 (10 points).

All distance measurements are in mm and angles in \circ .


Break down the 500N force into two perpendicular forces in horizontal and vertical directions, and separately calculate and add the moments.

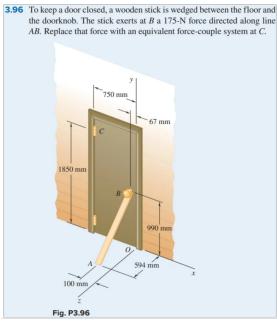

$$a)\mathbf{M}_B = \mathbf{r}_C \times \mathbf{F}_C = r_x F_x + r_y F_y = 0.175 \cdot 500 \sin 30^\circ - 0.300 \cdot 500 \cos 30^\circ \approx -86.15 \hat{\mathbf{k}} Nm$$

The equivalent force is the same 500N force as given in the problem.

$$b)\mathbf{M}_B = \mathbf{r}_A \times \mathbf{F}_A = 0.125 F_A \implies F_A \approx 689.23 N$$

 $F_A - F_{By} = -F_y, F_B x = F_x \implies \mathbf{F}_B \approx 250 \hat{\imath} - 1122.24 \hat{\jmath} N$

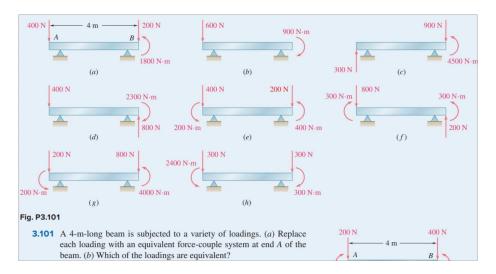
Problem 3.83 (10 points).



$$F_A + F_C = 1040, F_A r_A - F_C r_C = 0 \implies \begin{cases} F_A + F_C = 1040 \\ 6.7\cos 30^\circ F_A = 4\cos 30^\circ F_C \end{cases} \implies F_A \approx 388.79N, F_C \approx 651.21N$$

Both forces are directed 60 degrees below the horizon.

Problem 3.96 (10 points).





$$AB = \sqrt{0.033^2 + 0.990^2 + 0.594^2} = 1.155m, F_{AB} = 175N \left(\frac{0.033}{1.155} \hat{\imath} + \frac{0.990}{1.155} \hat{\jmath} - \frac{0.594}{1.155} \hat{k} \right) = 5\hat{\imath} + 150\hat{\jmath} - 90\hat{k}N$$

$$\mathbf{r} = 0.650\hat{\imath} - 1.850\hat{\jmath} + 0.594\hat{k}m \implies \mathbf{M}_C = \mathbf{r} \times \mathbf{F} = \begin{bmatrix} 0.650 \\ -1.850 \\ 0.594 \end{bmatrix} \times \begin{bmatrix} 5 \\ 150 \\ -90 \end{bmatrix} = 77.4\hat{\imath} + 61.47\hat{\jmath} + 106.75\hat{k}Nm$$

Problem 3.101 (10 points).

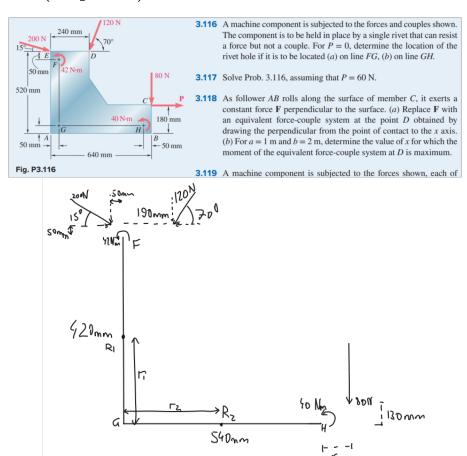
a)
$$M_A = 1800 - 4 \cdot 200 = 1000Nm, F_A = -200 - 400 = -600N$$

b)
$$M_A = -900Nm, F_A = -600N$$

c)
$$M_A = 4500 - 4 \cdot 900 = 900Nm, F_A = -600N$$

d)
$$M_A = -2300 + 4 \cdot 800 = 900Nm, F_A = 400N$$

e)
$$M_A = 200 + 400 - 4 \cdot 200 = -200Nm, F_A = -600N$$

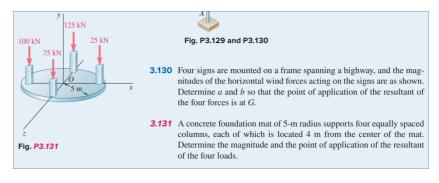

f)
$$M_A = -300 + 300 + 4 \cdot 200 = 800Nm, F_A = -600N$$

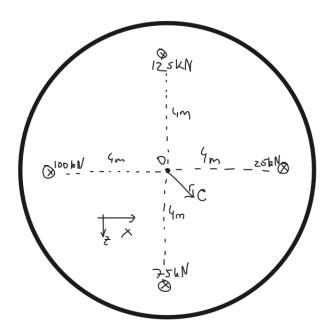
g)
$$M_A = 200 + 4000 - 4 \cdot 800 = 1000Nm, F_A = -1000N$$

h)
$$M_A = 2400 - 300 - 4 \cdot 300 = 900Nm, F_A = -600N$$

Therefore c) and h) are equivalent.

Problem 3.116 (10 points).


Replace all the forces and moments with a force-couple system at G.


$$\sum F_x = 200\cos 15|circ - 120\cos 70^\circ \approx 152.14N$$

$$\sum F_y = -80 - 200\sin 15^\circ - 120\sin 70^\circ \approx -244.53N$$

$$M_G = 40 + 42 + 0.47 \cdot (-200\cos 15^\circ + 120\cos 70^\circ) + 0.050 \cdot 200\sin 15^\circ - 0.19 \cdot 120\sin 70^\circ - 0.59 \cdot 80 \approx -55.54Nm$$
$$r_1 = \frac{55.54}{152.14} \approx 0.364m, r_1 = \frac{55.54}{244.53} \approx 0.227m$$

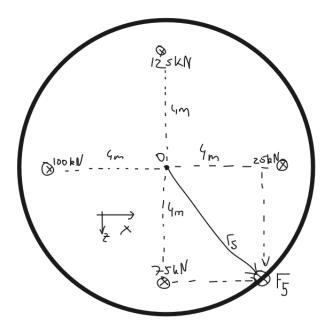
Problem 3.131(10 points).

$$\mathbf{M}_{O} = 4(75000 - 125000)\hat{\mathbf{i}} + 4(100000 - 25000)\hat{\mathbf{k}} = -200000\hat{\mathbf{i}} + 300000\hat{\mathbf{k}}Nm$$

$$\mathbf{R} = (-125000 - 100000 - 25000 - 75000)\hat{\mathbf{j}} = -325000\hat{\mathbf{j}}N$$

$$-200000\hat{\mathbf{i}} + 300000\hat{\mathbf{k}} = \mathbf{M} = \mathbf{r} \times \mathbf{F} = \begin{bmatrix} C_{x} \\ 0 \\ C_{z} \end{bmatrix} \times \begin{bmatrix} 0 \\ -325000 \\ 0 \end{bmatrix} = 325000C_{z}\hat{\mathbf{i}} - 325000C_{x}\hat{\mathbf{k}}$$

$$\therefore C_{x} = \frac{300000}{-325000} \approx -0.923m, C_{z} = \frac{-200000}{325000} \approx -0.615m$$


Problem 3.100 (20 points).

$$\mathbf{M}_{G} = \mathbf{r} \times \mathbf{P} = \begin{bmatrix} 0 \\ -0.100 \\ -0.060 \end{bmatrix} \times \begin{bmatrix} -1220 \\ 0 \\ 0 \end{bmatrix} = 73.2\hat{\boldsymbol{j}} - 122\hat{\boldsymbol{k}}Nm, \mathbf{F} = \mathbf{P} = -1220\hat{\boldsymbol{i}}N$$

Problem 3.132 (20 points).

3.132 Determine the magnitude and the point of application of the smallest additional load that must be applied to the foundation mat of Prob. 3.131 if the resultant of the five loads is to pass through the center of the mat.

Since we need the smallest force, it has to be on the edge of the circle, 5m away from the center, to provide maximum moment for its force. The moment for the other forces were taken from the solution of 3.131:

$$M_O = (-200000 + r_{5z}F_5)\hat{\mathbf{i}} + (300000 - r_{5x}F_5)\hat{\mathbf{k}} = 0 \text{ and } r_{5x}^2 + r_{5z}^2 = 5^2$$

$$\begin{cases} r_{5z}F_5 = 200000 \\ r_{5x}F_5 = 300000 \\ r_{5z} = \sqrt{25 - r_{5x}^2} \end{cases} \implies \frac{\sqrt{25 - r_{5x}^2}}{r_{5x}} = \frac{2}{3} \implies r_{5x} \approx 4.16m, r_{5z} \approx 2.77m, F_5 \approx 72100N$$

Python solutions

```
import numpy as np
def Problem3_81():
    # Values
    xBA = -0.125
   yBA = 0.075
   Force = 500
    Angle = 30
    xForceArm = 0.300
    yForceArm = -0.175
    BAlength = np.sqrt(xBA**2+yBA**2)
    BA = [xBA/BAlength, yBA/BAlength,0]
    vector_arm = [xForceArm,yForceArm,0]
    vector_force = [Force*np.sin(Angle* np.pi / 180),-Force*np.cos(Angle* np.pi / 180),0]
    moment = np.cross(vector_arm, vector_force)
    Force_A = moment[2]/xBA
    return ((moment, vector_force),(Force_A, [vector_force[0],vector_force[1]-Force_A,0]))
```

```
def Problem3_83():
    # Values
    Force = 1040
    Angle = 60
    AB = 6.7
    BC = 4
    ForceC = Force/(1+BC/AB)
    ForceA = Force-ForceC
    return ((ForceA, Angle), (ForceC, Angle))
def Problem3_96():
    # Values
    Force = 175
    Force_x = 0.100-0.067
    Force_y = 0.990
    Force_z = -0.594
    Arm_x = 0.750-0.100
    Arm_y = -1.850
    Arm_z = 0.594
    length = np.sqrt(Force_x**2 + Force_y**2+Force_z**2)
    vector_force = [Force*Force_x/length,Force*Force_y/length,Force*Force_z/length]
    vector_arm = [Arm_x, Arm_y, Arm_z]
    return np.cross(vector_arm, vector_force)
print("Problem 3.81: ", Problem3_81())
print("Problem 3.83: ", Problem3_83())
print("Problem 3.96: ", Problem3_96())
```