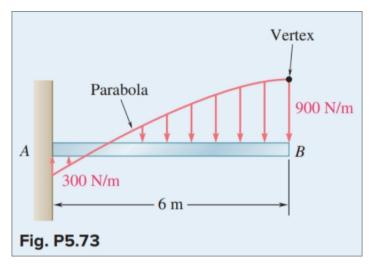

ENGS141 Engineering Statics - Homework 6

Mher Saribekyan A09210183

April 2, 2025

Problem 5.69

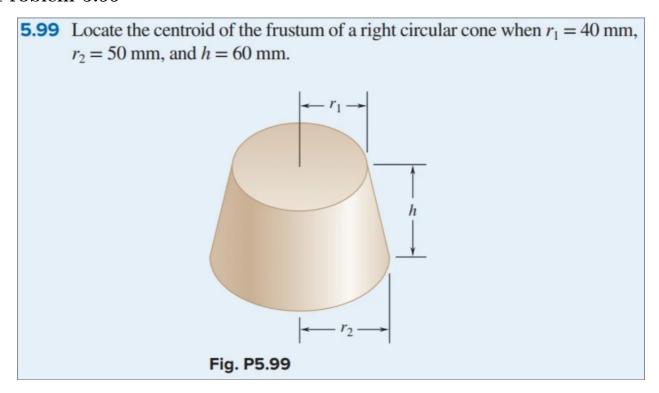
Determine the reactions at the beam supports for the given loading.



$$F_1 = \frac{4 \cdot 6}{2} = 12kN, F_2 = 2 \cdot 6 = 12kN, F_3 = 2 \cdot 4 = 8kN$$
$$c_{x1} = 2m, c_{x2} = 3m, c_{x3} = 8m$$
$$\therefore F = 32kN, M = 12 \cdot 2 + 12 \cdot 3 + 8 \cdot 8 = 124kNm$$

The reaction force is directed upwards, and the moment is directed counter-clockwise.

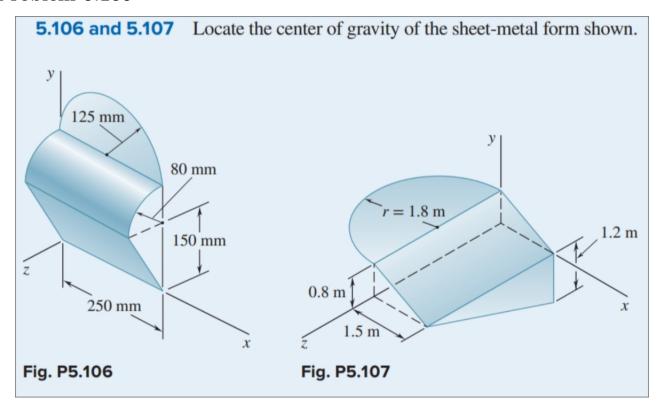
Problem 5.73


Determine the reactions at the beam supports for the given loading.

$$f(0) = -300N/m, f(6) = 900N/m \implies f(x) = -\frac{100}{3}(x-6)^2 + 900$$
$$\therefore F = \int_0^6 f(x) \, dx = 3000N, M = \int_0^6 x f(x) \, dx = 12600Nm$$

The reaction force is directed upwards, and the moment is directed counter-clockwise.

Problem 5.99

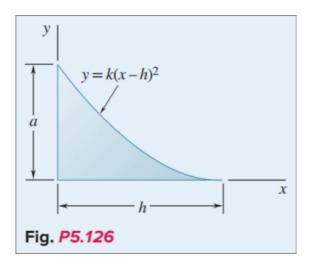

It is trivial that the centeroid lies in the central axis of the cone. Complete the cone, and do subtraction of cones:

$$V_0 = \frac{1}{3}\pi r_2^2 h_0 = \frac{1}{3}\pi 50^2 300, V_1 = \frac{1}{3}\pi 40^2 240$$

$$Q_z = \frac{300}{4} \frac{1}{3} \pi 50^2 300 - \left(60 + \frac{240}{4}\right) \frac{1}{3} \pi 40^2 240$$
$$\therefore z_c = \frac{Q_z}{V_0 - V_1} = \frac{1695}{61} \approx 27.8 mm$$

Wolframalpha was used to do the complicated calculations.

Problem 5.106



Area of rectangle is $S_1 = 250 \cdot 170 = 42500$, centroid is at $C_1(125, 75, 40)$. Area of arc is $S_2 = 250 \cdot \frac{80\pi}{2} = 10000\pi$, centroid is at $C_2(125, 150 + \frac{160}{\pi}, \frac{160}{\pi})$. Area of semicircle is $S_3 = \frac{\pi}{2}125^2 = 7812.5\pi$, centroid is at $C_3(125, 230 + \frac{500}{3\pi}, 0)$.

$$C = \frac{S_1 C_1 + S_2 C_2 + S_3 C_3}{S_1 + S_2 + S_3} \approx (125.0, 167.0, 33.5) mm$$

Problem 5.126

Locate the centroid of the volume obtained by rotating the shaded area about the x axis.

It is trivial that the centroid is along the x axis.

$$a = kh^{2}, \ V = \int_{0}^{h} \pi (k(x-h)^{2})^{2} dx = \pi k^{2} \int_{0}^{h} (x-h)^{4} dx = \frac{\pi k^{2} h^{5}}{5} = \frac{\pi a^{2} h}{5}$$

$$Q_{x} = \int_{0}^{h} x \pi (k(x-h)^{2})^{2} dx = \pi k^{2} \int_{0}^{h} x (x-h)^{4} dx = \pi k^{2} \int_{-h}^{0} (x+h) x^{4} dx = \pi k^{2} \left(\frac{h^{6}}{5} - \frac{h^{6}}{6}\right) = \frac{\pi a^{2} h^{2}}{30}$$

$$\therefore x_{c} = \frac{h}{6}$$