

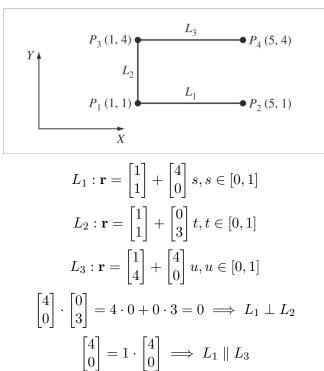
# ENGS241 Computer Aided Design - Homework 3

Mher Saribekyan A09210183

October 9, 2024

# Problem 6.1

Find the equations of the three lines  $L_1$ ,  $L_2$ , and  $L_3$  shown. Are  $L_1$  and  $L_2$  perpendicular? Are  $L_1$  and  $L_3$  parallel? Prove your answers.



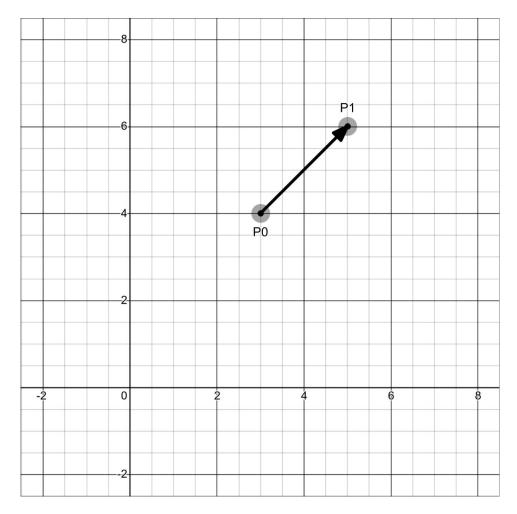
# Problem 6.2

A line equation is given by:

$$\mathbf{P} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix} + u \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$$

Find the end points of the line. Sketch the line with the end points and the u direction. Find the intersection points between the line and a circle with a center at (1,2,0) and radius of 2.

It was assumed that  $u \in [0,1]$ . Therefore, the endpoints are  $P_0 = (3,4,0)$  and  $P_1 = (5,6,0)$ .



The parametric equation for the line and the circle are:

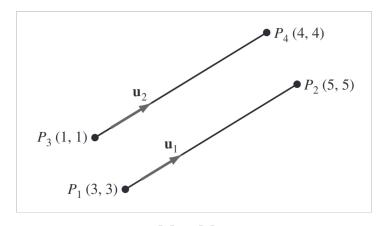
$$\begin{cases} x = 3 + 2u \\ y = 4 + 2u \end{cases}, u \in [0, 1] \text{ and } \begin{cases} x = 1 + 2\cos(2\pi t) \\ y = 2 + 2\sin(2\pi t) \end{cases}, t \in [0, 1]$$

$$\begin{cases} 1 + u = \cos(2\pi t) \\ 1 + u = \sin(2\pi t) \end{cases} \implies 2u^2 + 4u + 1 = 0$$

$$u = \frac{-4 \pm \sqrt{16 - 8}}{4} = \frac{-4 \pm 2\sqrt{2}}{4} \not\in [0, 1] \implies \text{ no intersection}$$

# Problem 6.3

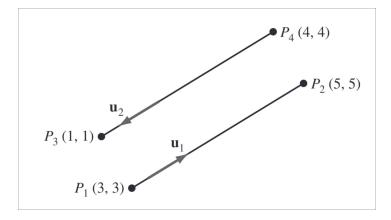
Find the angle  $\theta$  between the two lines for both cases shown below.



$$L_1: \mathbf{r} = \begin{bmatrix} 3\\3 \end{bmatrix} + \begin{bmatrix} 2\\2 \end{bmatrix} s, s \in [0, 1]$$

$$L_2: \mathbf{r} = \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} 3\\3 \end{bmatrix} t, t \in [0, 1]$$

$$\cos \theta = \frac{\begin{bmatrix} 2\\2 \end{bmatrix} \cdot \begin{bmatrix} 3\\3 \end{bmatrix}}{\|\begin{bmatrix} 2\\2 \end{bmatrix}\|\|\begin{bmatrix} 3\\3 \end{bmatrix}\|} = 1 \implies \theta = 0$$



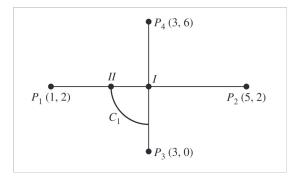
$$L_1 : \mathbf{r} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} s, s \in [0, 1]$$

$$L_2 : \mathbf{r} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} + \begin{bmatrix} -3 \\ -3 \end{bmatrix} t, t \in [0, 1]$$

$$\cos \theta = \frac{\begin{bmatrix} 2 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -3 \end{bmatrix}}{\|\begin{bmatrix} 2 \\ 2 \end{bmatrix}\|\|\begin{bmatrix} -3 \\ -3 \end{bmatrix}\|} = -1 \implies \theta = \pi$$

# Problem 6.4

Two lines with their end points and an arc are shown bellow:



a) Find the equations of the lines.

$$\overrightarrow{P_1P_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + t_1 \begin{bmatrix} 4 \\ 0 \end{bmatrix}, t_1 \in [0, 1]$$

$$\overrightarrow{P_3P_4} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + t_2 \begin{bmatrix} 0 \\ 6 \end{bmatrix}, t_2 \in [0, 1]$$

b) Using the equations, find the intersection point I of the two lines.

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} + t_1 \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + t_2 \begin{bmatrix} 0 \\ 6 \end{bmatrix} \implies t_1 = \frac{1}{2} \text{ and } t_2 = \frac{1}{3}$$
$$\therefore I = (3, 2)$$

c) Find the parametric equation of the arc  $C_1$  whose center is I and whose radius is 1 inch.

$$\begin{cases} x = 3 + \cos(2\pi t_3) \\ x = 2 + \sin(2\pi t_3) \end{cases}, t_3 \in [a, b]$$

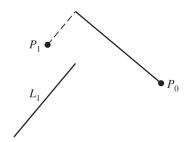
d) Find the intersection point II between  $C_1$  and  $L_1$ .

$$L_{1}: \begin{cases} x = 1 + 4t_{1} \\ y = 2 \end{cases} \implies \begin{cases} 1 + 4t_{1} = 3 + \cos(2\pi t_{3}) \\ 2 = 2 + \sin(2\pi t_{3}) \end{cases} \implies \begin{cases} t_{3} = 0, \implies t_{1} = \frac{3}{4} > \frac{1}{2} \\ t_{3} = \pi \implies t_{1} = \frac{1}{4} \end{cases}$$

$$\therefore II = (2, 2)$$

# Problem 6.8 d

Find the equation and end points of a line perpendicular to  $L_1$ , passes through  $P_0$ , and bounded by  $P_1$ .



Take the direction vector of  $L_1$  to be  $\vec{d} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$ . The direction vector of our line will be  $\vec{d'} = \begin{bmatrix} -d_y \\ d_x \end{bmatrix}$ . Denote a point  $P_2$ , that lines on our line, such that  $P_1P_2 \perp P_0P_2 \implies P_1P_2 \parallel L_1$ . If we combine all these together, we get the following system of equations:

$$u_{1} \begin{bmatrix} d_{x} \\ d_{y} \end{bmatrix} + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} = u_{2} \begin{bmatrix} -d_{y} \\ d_{x} \end{bmatrix} + \begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix}, u_{1}, u_{2} \in \mathbb{R}$$

$$\begin{cases} u_{1}d_{x} + x_{1} = -u_{2}d_{y} + x_{0} \\ u_{1}d_{y} + y_{1} = u_{2}d_{x} + y_{0} \end{cases} \implies \begin{cases} u_{1} = \frac{-u_{2}d_{y} + x_{0} - x_{1}}{d_{x}} \\ \frac{-u_{2}d_{y} + x_{0} - x_{1}}{d_{x}} d_{y} + y_{1} = u_{2}d_{x} + y_{0} \end{cases}$$

$$\therefore u_{2} = \frac{x_{0} - x_{1}d_{y} + y_{1}d_{x} - y_{0}d_{x}}{d_{x}^{2} + d_{y}}$$

$$L_{2} : \vec{r} = u_{2} \begin{bmatrix} -d_{y} \\ d_{x} \end{bmatrix} + \begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix}, u_{2} \in \begin{bmatrix} 0, \frac{x_{0} - x_{1}d_{y} + y_{1}d_{x} - y_{0}d_{x}}{d_{x}^{2} + d_{y}} \end{bmatrix}$$

The endpoints of our line segment are the point  $P_0$  and the point we get, when we plug in the value  $\frac{x_0 - x_1 d_y + y_1 d_x - y_0 d_x}{d_x^2 + d_y}$  in the above equation:

$$P_2 = \left(-d_y \frac{x_0 - x_1 d_y + y_1 d_x - y_0 d_x}{d_x^2 + d_y} + x_0, d_x \frac{x_0 - x_1 d_y + y_1 d_x - y_0 d_x}{d_x^2 + d_y} + y_0\right)$$

# Phone Holder

The phone holder consists of two parts, the base and the pin. The pin has four possible slots to go in, that vary the angle of the phone. The charging port is cut out, alongside with the speaker grills. Designed for iPhone SE 2020, but compatible with many other smartphones.

