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1 Introduction

If you hang a mass to a spring and displace from its equilibrium position, it will start harmonic
oscillations.

The simplified formula for the period is:

T = 2π

√
m

k

However, the mass of the spring is neglected in this equation. The more accurate equation for the
period of a spring oscillator is:

T = 2π

√√√√m+
mspring

3
k

As we see, the mass of the spring has a
1

3
coefficient in this equation. An experiment was carried

out to test this equation, find the spring constant and this coefficient.

1



2 Measurements and data

A spring was weighed and mounted on a stand. Different measured weights were hung on the spring.
It was displaced from the equilibrium point, and the time for 20 oscillations were measured with a
stopwatch, after letting the spring go.

Period was calculated by oscillating the spring a fixed number of times, and measuring the time
it took to complete.

Variable Value Resolution
Attached weight Controlled 1g

Time of oscillations Measured 0.1s

Table 1: List of variables

Instrument or material Description
Stand Lab Stand
Spring Lab Spring

Weighing scale With an accuracy of 1g
Weights Different, to provide sufficient data points

Stopwatch Smartphone was used

Table 2: List of instruments and materials
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Source of error Type of error Countermeasures
Oscillations Random With lower masses, the spring started to os-

cillate like a pendulum. The spring was re-
leased as vertical as possible, and any exper-
iments with pendulum-like oscillations were
disregarded.

Reaction time Random Numerous oscillations were done before mea-
suring the time, to lessen the significance of
the reaction time.

Table 3: Estimated errors

The weight of the spring was measured 26g, and the time for a constant parameter of 20 oscil-
lations were measured.

m (g) 204 300 399 501 602 703 804 906 1020
t (s) 12.14 14.56 16.24 18.11 19.84 21.29 22.88 24.2 25.6

Table 4: Spring Data

The lower mass of 200 grams were used, because oscillations with any mass less than that
causes destabilisation and chaotic pendulum-like oscillations, which would make our calculations
less precise. A maximum mass of 1000 grams were used, because with more mass than that the mass
would deform the spring and Hooke’s law wouldn’t be kept. 20 oscillations were used, because for
10, the time for the 200 gram mass was 6 seconds, and reaction time has a greater effect compared
to 20 oscillations. And more than 20, would lead to other sources of errors, such as oscillations and
loss of energy.

3 Calculations and plots

To use graphical analysis, the equation was linearised by raising both sides of the equation to the
power of two. The following equation was obtained:

T 2 =
4π2

k
m+

4π2 · β ·mspring

k
and T =

t

N

This equation shows the the dependence of T 2 from m, hence, the periods and squares of the periods
were calculated.

m (kg) 0.204 0.300 0.399 0.501 0.602 0.703 0.804 0.906 1.020
T2 (s2) 0.3684 0.5300 0.6593 0.8199 0.9841 1.1332 1.3087 1.4641 1.6384

Table 5: Spring Data
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Figure 1: Plot of attached weights and squares of periods

m2 (kg) 0.0416 0.0900 0.1592 0.2510 0.3624 0.4942 0.6464 0.8208 1.0404
T2(s2) (pred.) 0.3659 0.5154 0.6697 0.8286 0.9860 1.1433 1.3007 1.4596 1.6373

Table 6: Data for error calculation

Slope and y-intercept error calculation formulas used:

(∆k)2 ≈
∑

(ypredicted − yexperiment)
2

n · (x2 − x2) · (n− 2)
and (∆c)2 ≈ x2 · (∆k)2
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4 Evaluation

The slope of the plot is
4π2

k
= 1.5581, which implies that the spring constant is k = 25.3N/m.

The y-intercept is
4π2 · β ·mspring

k
= 0.048, hence β = 1.18. We see that the data points are very

close to the trendline, suggesting that the formula is correct. The error for the slope of the plot was
calculated 0.012, hence an error of 0.19N/m in the spring constant. The y-intercept has an error
of 0.0077, which suggest an error of 0.19 in β.

5 Conclusion

An experiment was carried out to test the equation for the period of a spring oscillator. The data
confirms the equation, the spring constant was calculated 25.3 ± 0.2N/m, however the coefficient
of the mass of the spring was found 1.18± 0.2, which is far from the theoretical value of 1/3. The
likely cause of this inaccuracy is the relatively heavy masses used in the experiment, compared to
the mass of the spring.
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