
ENGS124 Electricity and Magnetism Lab Section B Finding the internal resistance of a li-ion battery

Mher Saribekyan A09210183

November 21, 2024

1 Theory

All batteries in the real world have internal resistances. They can be modeled by a series resistor. If we connect an external resistor (R) to this battery, we have the following schematic:

After applying Kirchhoff's voltage law, the following equation is reached:

$$\mathcal{E} = I(r_i + R) \implies V_{\rm R} = \mathcal{E} - r_i I$$

An experiment was carried out to test this equation and find the internal resistance of an 18650 lithium ion battery.

2 Experiment

The following circuit was assembled, with an 18650 li-ion battery and a range of resistors. The voltage across the resistors were measured, as well as the voltage across the battery, before connecting the resistors. With a 5Ω resistor, the power on it is $P = \frac{V^2}{R} \approx \frac{4^2}{5} \approx 3.2W$, way above the 0.25W rating of small resistors. This is why high power (5W) resistors were used.

Instrument or material	Description	
Multimeter	Voltage and resistance measurement functionality	
Battery and holder	A charged lithium ion battery	
Resistors	High power resistors	
Cables	For the multimeter and battery	

Table 1: List of instruments and materials

Variable	Value	Resolution
Resistor resistance	Controlled	0.1Ω
Voltages across resistor	Measured	0.01V

Table 2: List of variables

$V_{\text{battery}}(V)$	$R(\Omega)$	$V_R(V)$	I(A)
4.06	9.60	3.98	0.41
4.06	7.90	3.98	0.50
4.06	2.10	3.77	1.80
4.05	4.20	3.88	0.92
4.05	6.60	3.95	0.60
4.05	5.10	3.93	0.77
4.05	1.10	3.53	3.21
4.05	21.60	4.01	0.19
4.05	32.70	4.03	0.12

Table 3: Experiment data

Source of error	Type of error	Countermeasures
Resistance mea-	Random	Multimeters are not very good at measuring
surement		resistances.
Cable resistance	Systematic	Since we are using low value resistors, the
		cable resistances can distort the results
Resistor heating	Systematic	The measurement was taken very fast to
		limit resistor heating

Table 4: Estimated errors

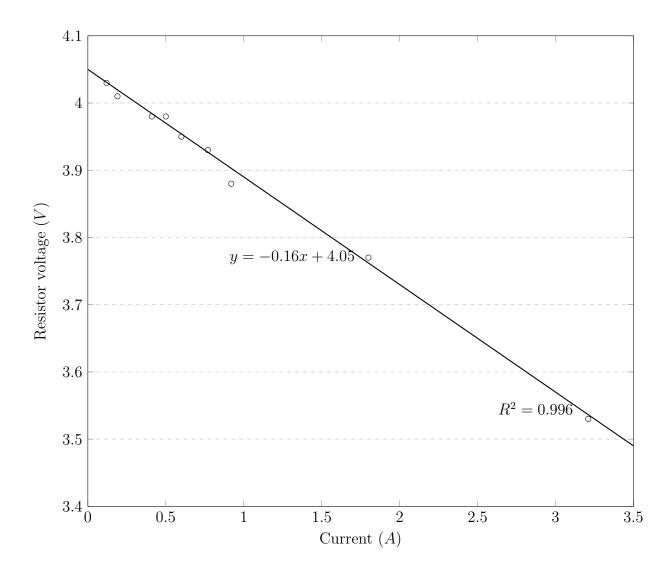


Figure 1: Plot of dependence of voltage across the resistor from current

The above found equation was confirmed and the internal resistor is calculated to be $r_i \approx 0.16\Omega$.